Math 131 Exam 3 Sample 2 Solutions

1. (a) i. The Venn diagram is:

ii. $P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{0.4}{0.6}=\frac{2}{3}$
iii. No, E and F are not mutually exclusive because $E \cap F \neq \emptyset$.
iv. $E^{\prime} \cup F$ is shown here:

(b) The test manufacturer would be most interested in $P(B \mid A)$ because they are most interested in the efficacy of their test for someone who actually has the disease.
Note: The efficacy of something is how well it does what it is designed to do.
2. (a) Define events:
E is the event where the first patient has condition A.
F is the event where the second patient has condition C.
We are interested in $P\left(E \cap F^{\prime}\right)$. We use:

$$
P\left(E \cap F^{\prime}\right)=P\left(F^{\prime} \mid E\right) P(E)=\left(\frac{69}{99}\right)\left(\frac{20}{100}\right)=\frac{23}{165}
$$

Note: It's also fine to define F to be the event where the second patient does not have condition C. In that case we'd be interested in $P(E \cap F)$. The answer will be the same.
(b) The information given is:
$P(E)=0.002$
$P(F \mid E)=0.93$
$P\left(F \mid E^{\prime}\right)=0.05$ We are interested in $P(E \mid F)$ and so we use Bayes' Theorem with the E and F interchanged:

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E) P(F \mid E)}{P(E) P(F \mid E)+P\left(E^{\prime}\right) P\left(F \mid E^{\prime}\right)} \\
& =\frac{(0.002)(0.93)}{(0.002)(0.93)+(0.998)(0.05)} \\
& =\frac{0.00186}{0.05176}=\frac{31}{2598} \approx 0.0359
\end{aligned}
$$

3. (a) The PDF is $f(x)=0.2 e^{-0.2 x}$.
(b) Note: Living to 75 or above is 5 additional years. Also I've done two decimal places rather than one.
This probability would be

$$
\begin{aligned}
\int_{5}^{\infty} 0.2 e^{-0.2 x} d x & =\lim _{b \rightarrow \infty} \int_{5}^{b} 0.2 e^{-0.2 x} d x \\
& =\lim _{b \rightarrow \infty}-\left.e^{-0.2 x}\right|_{5} ^{b} \\
& =\lim _{b \rightarrow \infty}-\frac{1}{e^{0.2 b}}+\frac{1}{e^{0.2(5)}} \\
& =\frac{1}{e} \\
& \approx 0.37
\end{aligned}
$$

(c) Now we want to find the upper limit Y so that 90% of all 70 -year olds will live under that many years. In other words:

$$
\begin{aligned}
\int_{0}^{Y} 0.2 e^{-0.2 x} d x & =0.9 \\
-\left.e^{-0.2 x}\right|_{0} ^{Y} & =0.9 \\
-e^{-0.2 Y}+1 & =0.9 \\
e^{-0.2 Y} & =0.1 \\
-0.2 Y & =\ln (0.1) \\
Y & =\frac{\ln (0.1)}{-0.2} \\
Y & \approx 11.5
\end{aligned}
$$

Thus 90% of 70 -year olds will live 11.5 or fewer additional years.
4. (a) A single organism has mean 2 and standard deviation 1. Thus by the CLT a sample of 50 will have approximately normal distribution with $\mu=2$ and $\sigma=1 / \sqrt{50}$.
We want $P(1.7 \leq X \leq 2.1)$. We convert to z-scores to get:

$$
P\left(\frac{1.7-2}{1 / \sqrt{50}} \leq Z \leq \frac{2.1-2}{1 / \sqrt{50}}\right)=P(-2.12 \leq Z \leq 0.71)=0.7611-0.0170=0.7441
$$

(b) For a sample of 100 organisms $\mu=2$ and $\sigma=1 / \sqrt{100}=0.1$. Now be careful. We want the area above our z-score to be 10% which means the area below is 90%. The closest we can get is using $z=1.28$ so then:

$$
\begin{aligned}
1.28 & =\frac{x-2}{0.2} \\
x-2 & =2.56 \\
x & =4.56
\end{aligned}
$$

So only 10% of our organisms will live over 4.56 years.
5. (a) i. We need

$$
\begin{aligned}
\int_{0}^{5} k x^{2} d x & =1 \\
\left.\frac{k}{3} x^{3}\right|_{0} ^{5} & =1 \\
\frac{k}{3}(125)-\frac{k}{3}(0) & =1 \\
k & =\frac{3}{125}
\end{aligned}
$$

ii. Then

$$
E(X)=\int_{0}^{5} x\left(\frac{3}{125} x^{2}\right) d x=\int_{0}^{5} \frac{3}{125} x^{3} d x=\left.\frac{3}{500} x^{4}\right|_{0} ^{5}=\frac{3}{500}(625)=3.75
$$

iii. And

$$
\begin{aligned}
\operatorname{Var}(X) & =\int_{0}^{5} x^{2}\left(\frac{3}{125} x^{2}\right) d x-(3.75)^{2} \\
& =\int_{0}^{5} \frac{3}{125} x^{4} d x-(3.75)^{2} \\
& =\left.\frac{3}{625} x^{5}\right|_{0} ^{5}-(3.75)^{2} \\
& =\frac{3}{500}(3125)-(3.75)^{2} \\
& =4.6875
\end{aligned}
$$

(b) Here is the first pruning:

Second pruning:

Thus the best choice is to medicate at just over half the cost on average.

