1. (a) i. Supplement I contains 20 mg of vitamin A per supplement.
ii. Bill took 5 of supplement II.
iii. If the first is $X=\left[\begin{array}{l}3 \\ 5\end{array}\right]$ and the second is $Y=\left[\begin{array}{cc}20 & 15 \\ 10 & 30\end{array}\right]$ then $X$ is supp $\times \operatorname{Bill}$ and $Y$ is vitamin $\times$ supp and to make the multiplication work we need $Y X$ which will then be vitamin $\times$ Bill:

$$
Y X=\left[\begin{array}{ll}
20 & 15 \\
10 & 30
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{l}
135 \\
180
\end{array}\right] \rightarrow \begin{array}{rr|r}
\# \mathrm{mg} & \text { Bill } \\
\hline \mathrm{A} & 135 \\
\mathrm{~B} & 180
\end{array}
$$

This matrix shows the amount of each vitamin that Bill took.
(b) i. After one iteration:

$$
\left[\begin{array}{ll}
0.2 & 0.7 \\
0.3 & 0.6
\end{array}\right]\left[\begin{array}{c}
1000 \\
600
\end{array}\right]=\left[\begin{array}{l}
620 \\
660
\end{array}\right]
$$

and after two:

$$
\left[\begin{array}{ll}
0.2 & 0.7 \\
0.3 & 0.6
\end{array}\right]=\left[\begin{array}{l}
620 \\
660
\end{array}\right]=\left[\begin{array}{l}
586 \\
582
\end{array}\right]
$$

ii. The eigenvalues are the solutions of

$$
0=\operatorname{det}\left[\begin{array}{cc}
0.2-\lambda & 0.7 \\
0.3 & 0.6-\lambda
\end{array}\right]=\ldots=(\lambda-0.9)(\lambda+0.1)
$$

We choose the positive $\lambda=0.9$. Then we solve

$$
\left[\begin{array}{ccc}
0.2-0.9 & 0.7 & 0 \\
0.3 & 0.6-0.9 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
-0.7 & 0.7 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus $\left[\begin{array}{l}x \\ y\end{array}\right]$ is the eigenvector with $-0.7 x+0.7 y=0$ or $x=y$. If there are 2000 all together then there are 1000 of each.
2. (a) We have

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{x+1} x+y d y d x & =\int_{0}^{2} x y+\left.\frac{1}{2} y^{2}\right|_{0} ^{x+1} d x \\
& =\int_{0}^{2}\left[x(x+1)+\frac{1}{2}(x+1)^{2}\right]-\left[x(0)+\frac{1}{2}(0)^{2}\right] d x \\
& =\int_{0}^{2} \frac{3}{2} x^{2}+2 x+\frac{1}{2} d x \\
& =\frac{1}{2} x^{3}+x^{2}+\left.\frac{1}{2} x\right|_{0} ^{2} \\
& =\left[\frac{1}{2}(2)^{3}+(2)^{2}+\frac{1}{2}(2)\right]-\left[\frac{1}{2}(0)^{3}+(0)^{2}+\frac{1}{2}(0)\right]
\end{aligned}
$$

(b) We have $f_{x}=3 x^{2}-12 x=0$ so $3 x(x-4)=0$ so $x=0$ or $x=4$.

We have $f_{y}=6-2 y=0$ so $y=3$.
Thus our two potential points are $(0,3)$ and $(4,3)$.
Then $D(x, y)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=(6 x-12)(-2)-(0)^{2}=-12 x+24$.
$(0,3): D(0,3)=+$ and $f_{x x}(0,3)=-$ so $(0,3)$ is a relative minimum.
$(4,3): D(4,3)=-$ so $(4,3)$ is a saddle point.
3. (a) The initial value problem would be $\frac{d y}{d t}=0.032 y+200$ with $y(0)=1000$.
(b) This is separable:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2 \sqrt{y}}{x}+\sqrt{y} \\
\frac{d y}{d x} & =\sqrt{y}\left(\frac{2}{x}+1\right) \\
y^{-1 / 2} d y & =\frac{2}{x}+1 d x \\
\int y^{-1 / 2} d y & =\int \frac{2}{x}+1 d x \\
2 \sqrt{y} & =2 \ln |x|+x+C \\
\sqrt{y} & =\ln |x|+\frac{1}{2} x+\frac{C}{2} \\
y & =\left(\ln |x|+\frac{1}{2} x+\frac{C}{2}\right)^{2}
\end{aligned}
$$

(c) We should assume $t>0$. This should have been given. Then this is first-order linear:

$$
\begin{aligned}
t \frac{d y}{d t} & =t^{3}-t-y \\
\frac{d y}{d t} & =t^{2}-1-\left(\frac{1}{t}\right) y \\
\frac{d y}{d t}+\left(\frac{1}{t}\right) y & =t^{2}-1
\end{aligned}
$$

We have $P(t)=\frac{1}{t}$ so $S(t)=\ln |t|=\ln t$. Thus the solution is as follows:

$$
\begin{aligned}
y & =e^{-\ln t} \int\left(t^{2}-1\right) e^{\ln t} d t \\
& =\frac{1}{t} \int t^{3}-t d t \\
& =\frac{1}{t}\left[\frac{1}{4} t^{4}-\frac{1}{2} t^{2}+C\right] \\
& =\frac{1}{4} t^{3}-\frac{1}{2} t+\frac{C}{t}
\end{aligned}
$$

4. (a) The table is:

| $x$ | $p(x)$ |  |
| :--- | :--- | :--- |
| 0 | $1 / 8=0.125$ | (Corresponding to TTT.) |
| 1 | $3 / 8=0.375$ | (Corresponding to TTH, THT and HTT.) |
| 2 | $3 / 8=0.375$ | (Corresponding to THH, HTH and HHT.) |
| 3 | $1 / 8=0.125$ | (Corresponding to HHH.) |

(b) $P(X \leq 2)=\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=\frac{7}{8}$.
(c) We have

$$
E(X)=0.125(0)+0.375(1)+0.375(2)+0.125(3)=1.5
$$

and

$$
\begin{aligned}
\sigma(X) & =\sqrt{\operatorname{Var}(X)} \\
& =\sqrt{0.125(0-1.5)^{2}+0.375(1-1.5)^{2}+0.375(2-1.5)^{2}+0.125(3-1.5)^{2}} \\
& =\sqrt{0.75}
\end{aligned}
$$

(d) With the CLT and 100 times we use $\mu=1.5$ and $\sigma=\sqrt{0.75} / \sqrt{100}=\sqrt{0.75} / 10$. We convert to $z$ :

$$
z=\frac{1.4-1.5}{\sqrt{0.75} / 10}=-1.15 \quad \text { and } \quad z=\frac{1.65-1.5}{\sqrt{0.75} / 10}=1.73
$$

and so

$$
P(1.4 \leq X \leq 1.65)=P(-1.15 \leq Z \leq 1.73)=0.9582-0.1251=0.8331
$$

(e) If there is a 0.05 probability above then there is a 0.95 probability below so we look up 0.95 within the table and get $z=1.64$ (or $z=1.65$, they're equally close - you could be sneaky and use $z=1.645$ but we won't) and then:

$$
\begin{aligned}
1.64 & =\frac{x-1.5}{\sqrt{0.75} / 10} \\
x & =1.6420
\end{aligned}
$$

So there is only a $5 \%$ probability that the average will lie above 1.6420 .
5. (a) We have $f(x)=a e^{-a x}$ and:

$$
\begin{aligned}
\int_{6}^{\infty} a e^{-a x} d x & =0.2 \\
\lim _{b \rightarrow \infty}-\left.e^{-a x}\right|_{6} ^{b} & =0.2 \\
\lim _{b \rightarrow \infty}-\frac{1}{e^{a(b)}}+\frac{1}{e^{a(6)}} & =0.2 \\
e^{-6 a} & =0.2 \\
-6 a & =\ln (0.2) \\
a & =-\frac{1}{6} \ln (0.2)
\end{aligned}
$$

so the mean is

$$
\mu=\frac{1}{a}=\frac{1}{-\frac{1}{6} \ln (0.2)} \approx 3.73 \text { minutes }
$$

(b) We wish to know $P(E \mid F)$. Bayes' Theorem tells us:

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E) P(F \mid E)}{P(E) P(F \mid E)+P\left(E^{\prime}\right) P\left(F \mid E^{\prime}\right)} \\
& =\frac{(2 / 6)(1 / 5)}{(2 / 6)(1 / 5)+(4 / 6)(2 / 5)}
\end{aligned}
$$

(c) The key is that there must be overlap between $E$ and $F$ but $P(E \mid F)$ must equal $P(E)$. Here's an example:


Note: You might think this is tricky but there's a trick to the tricky trickiness. What I did was just think of two events which satisfy that criteria and then use those as my model. I thought about flipping two coins and letting $E$ be a head on the first coin and $F$ be a head on the second coin. We know for a fact these are independent but not mutually exclusive. My Venn diagram corresponds to this real world situation.
6. (a) i. The fixed point is located where $\frac{1}{16} x(x-1)^{2}=x$. If $x=0$ we get the trivial fixed point and if $x \neq 0$ we cancel it to get

$$
\begin{aligned}
\frac{1}{16}(x-1)^{2} & =1 \\
(x-1)^{2} & =16 \\
x-1 & = \pm 4 \\
x & =1 \pm 4
\end{aligned}
$$

The only one which makes sense as a population is $x=5$.
ii. We have

$$
\begin{aligned}
& a_{1}=5.1 \\
& a_{2}=f(5.1)=5.4 \\
& a_{3}=f(5.4)=6.5 \\
& a_{4}=f(6.5)=12.3 \\
& a_{5}=f(12.3)=98.2
\end{aligned}
$$

iii. Not stable because even though we started close to the fixed point 5 we moved away from it.
iv. We have

$$
\begin{aligned}
f(x) & =\frac{1}{16}\left(x^{3}-2 x^{2}+x\right) \\
f^{\prime}(x) & =\frac{1}{16}\left(3 x^{2}-4 x+1\right) \\
\left|f^{\prime}(5)\right| & =\frac{1}{16}(3(25)-4(4)+1) \\
\left|f^{\prime}(5)\right| & =\frac{1}{16}(60) \\
\left|f^{\prime}(5)\right| & >1
\end{aligned}
$$

Here again we see it's unstable.
(b) i. The approximate fixed point is $x \approx 3.7$.
ii. This is how it looks, more or less:


Here we have, approximately:

$$
\begin{aligned}
& a_{1}=0.5 \\
& a_{2}=2.6 \\
& a_{3}=4 \\
& a_{4}=3.3 \\
& a_{5}=3.7
\end{aligned}
$$

iii. We see $a_{1}=1$ does the job, as shown by this cobweb. Note that the cobweb is not mandatory nor requested.

iv. The largest that $a_{1}$ could be is 7 because there is no function beyond that point on the graph.
v . The largest that $a_{2}$ could be is about 4 because that's the highest the function goes (remember how we get $a_{2}$ ).

