Calculus 141, section Complex.2 Extended Basics

notes by Tim Pilachowski

Be sure to read, print and/or download the 141 complex number notes (C#N). [You can also link to them either
from our Math 141 web page or from the Math Department's course information page.] There’s also a 141
complex number summary. The lecture below contains material from sections 5, 8, 9, and 10 of the C#N. (The
related exercises in C#N are numbers 5, 6,9, 11 and 13 - 16.)

Just like for Real numbers, geometric series with Complex number terms will have a radius of convergence 0 <

R < o0 in the Complex plane where R is the radius of a circle centered at the origin. The geometric series z Z"
n=0

will converge to % when |z| <lI.
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Example A: Find a and b such that z [% + %zj =a+bi. Answers: %; %
n=0

Example B: Prove Euler’s formula, ¢'® =cos@+isiné.



Considered as a function in the complex plane, f(8)= ¢'? is a circle of radius 1 centered at the origin (the unit

circle). In particular, note that f(7)= e =cosm+isinr=—1+0=—1 , which leads to e +1=0 , a quite
elegant result.

Derivatives of functions involving Complex numbers have the same properties and follow the same conventions

as for Real numbers, thus %(eiej :ieia =i(cos@=isin@)=icos@—sin@ =—sin@+icosb.

Euler’s formula led to z = rcos@+irsin@ = re'?. The product of two complex numbers was then
(zl )(z2 )= (rleia sze’ﬁ ): (r1 10} )ei (a+4) . Now consider the case for which z =cos@+isin# and we want to

calculate z" = (cos@+isin8)" . The observation about products above leads us to DeMoivre’s Theorem:

7" =(cos@+isinB)" = (eiay = ei(n '9) = cos(n@)+isin(n@). One result of DeMoivre’s Theorem is that we
now have a means of deriving formulae for cos(n8)and sin(rn8).

Example C: Verity the double-angle formulae for cosine and sine.

A similar process of computation and comparison would provide us formulae for cos(n6) and sin(n6) as
polynomials of degree n in cos #and sin 6. (See exercise #6 in the C#N.)
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Given a complex number z = re!? £0 and an integer n > 0, there are precisely n distinct n™ roots of z. Let

. . : i o
w= pe'® represent an n root of z. Then z=w" = rel? = p"e!"® Thus p" =r = p="3r, thatis, pis

the real, positive n th root of r. Also, nad=0+2kr = a= g + k2—7[.

n n
Note that the roots w lie on a circle of radius p centered at the origin.
If we take values fork=0, 1, 2, ..., n — 1, we will travel around that
circle to n uniformly-spaced points, each of which is separated from

its neighbors by an angle of 2 . Our method: Find w, (the smallest
n

2 .
answer > (), then add il to the angle until we have all n roots.
n




Example D: Find the 3 cube roots of —27.

Example E: Find a) the 4 fourth roots of 81, and b) the 4 fourth roots of 81i.

Finding the nth roots of 1 is investigated in exercise #11 in the C#N. These “roots of unity” can be found either
by solving an equation as in Example D or E above, or by beginning on the unit circle at z =1 + 0i and moving

. . . 2z
around the circle in successive angles — .
n

Section 5 of the C#N refers to the Fundamental Theorem of Algebra (Every nonconstant polynomial with
coefficients in C (or R) has roots in C.), and the Factorization Theorem:

A polynomial with complex coefficients of degree at least 1, p(z)=c,z" +¢, 2" +c, ,2" > +...+ ¢,z +c, can
be factored as a product of linear terms, p(z)=c,(z—z)(z—2z;)...(z—z,), some of which may have a
multiplicity greater than one.

Example F: Find the linear factors of 2 +27.

Example G: Find the linear factors of 242723,



