
Calculus 141, section Complex.2 Extended Basics 
notes by Tim Pilachowski 
 

Be sure to read, print and/or download the 141 complex number notes (C#N). [You can also link to them either 

from our Math 141 web page or from the Math Department's course information page.] There’s also a 141 

complex number summary. The lecture below contains material from sections 5, 8, 9, and 10 of the C#N. (The 

related exercises in C#N are numbers 5, 6, 9, 11 and 13 – 16.) 
 

Just like for Real numbers, geometric series with Complex number terms will have a radius of convergence 0 ≤ 

R < ∞ in the Complex plane where R is the radius of a circle centered at the origin. The geometric series ∑
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Example B: Prove Euler’s formula, θθθ sincos ie
i += . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Considered as a function in the complex plane, ( ) θθ i
ef =  is a circle of radius 1 centered at the origin (the unit 

circle). In particular, note that ( ) 101sincos −=+−=+== πππ π ief i , which leads to 01 =+πi
e , a quite 

elegant result. 
 

Derivatives of functions involving Complex numbers have the same properties and follow the same conventions 

as for Real numbers, thus ( ) θθθθθθ
θ
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Euler’s formula led to θθθ i
rerirz =+= sincos . The product of two complex numbers was then 

( )( ) ( )( ) ( ) ( )βαβα +== iii
errererzz 212121 . Now consider the case for which θθ sincos iz +=  and we want to 

calculate ( )nn
iz θθ sincos += . The observation about products above leads us to DeMoivre’s Theorem: 

( ) ( ) ( ) ( ) ( )θθθθ
θθ nineeiz

nininn sincossincos +===+= . One result of DeMoivre’s Theorem is that we 

now have a means of deriving formulae for ( ) ( )θθ nn sin and cos . 
 

Example C: Verify the double-angle formulae for cosine and sine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A similar process of computation and comparison would provide us formulae for ( )θncos  and ( )θnsin  as 

polynomials of degree n in cos θ and sin θ. (See exercise #6 in the C#N.) 
 

Given a complex number 0≠= θi
rez  and an integer n > 0, there are precisely n distinct n 

th  roots of z. Let 

αρ i
ew =  represent an n 

th root of z. Then 
αθ ρ ninin erewz =⇒= . Thus 

nn
rr =⇒= ρρ , that is, ρ is 

the real, positive n 
th root of r. Also, 

n
k

n
kn

πθ
απθα

2
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Note that the roots w k lie on a circle of radius ρ centered at the origin. 

If we take values for k = 0, 1, 2, … , n – 1, we will travel around that 

circle to n uniformly-spaced points, each of which is separated from 

its neighbors by an angle of 
n

π2
. Our method: Find 0w  (the smallest 

answer ≥ 0), then add 
n

π2
 to the angle until we have all n roots.  

 

 

 

 

 

 
 



Example D: Find the 3 cube roots of  – 27. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Example E: Find a) the 4 fourth roots of 81, and b) the 4 fourth roots of 81i. 

 

 

 

 

 

 

 

 

 

 
 

Finding the nth roots of 1 is investigated in exercise #11 in the C#N. These “roots of unity” can be found either 

by solving an equation as in Example D or E above, or by beginning on the unit circle at z = 1 + 0i and moving 

around the circle in successive angles 
n

π2
. 

 

Section 5 of the C#N refers to the Fundamental Theorem of Algebra (Every nonconstant polynomial with 

coefficients in C (or R) has roots in C.), and the Factorization Theorem: 

A polynomial with complex coefficients of degree at least 1, ( ) 01

2

2

1

1 czczczczczp
n

n

n

n

n

n +++++= −

−

−

− K  can 

be factored as a product of linear terms, ( ) ( )( ) ( )nn zzzzzzczp −−−= K21 , some of which may have a 

multiplicity greater than one. 
 

Example F: Find the linear factors of 273 +z . 

 

 

 

 

 

 

 
 

Example G: Find the linear factors of 32 24 −+ zz . 


