
Calculus 141, section 6.2 Length of a Curve 
notes by Tim Pilachowski 

 

Using the same sort of mathematical thinking applied to volumes in section 6.1, 

the length of a curve, f(x), over an interval [a, b] can be approximated by a series 

of line segments measured over increasingly smaller intervals—the length of 

curve is the sum of the length of the line segments. 
 

Split the interval [a, b] into n subintervals. Then (just like when you first 

encountered Riemann sums) 
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simplification gives us a formula for the length of each line segment: 
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As the number of intervals, n, approaches infinity (i.e. || P || approaches 0), the 

resulting Riemann sum yields a formula: 
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Example A: Find the length of a curve over the interval [2, 4] where ( ) 15 −=′ xxf .  Answer: ( )216
7
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Example B: Find the length of the curve ( ) ( ) 2
3

32 −= xxm  on the interval [3, 5]. Answer: 
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Example C: Find the length of the graph of ( )
x

xxg
4

1

3

1 3 +=  over the interval [1, 3].  Answer: 
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NOTE WELL: Real life is almost never as easy as the three examples above, which is why (in upcoming 

sections) we will be greatly expanding our list of techniques for finding integrals. 


