Calculus 141, section 6.2 Length of a Curve

notes by Tim Pilachowski

Using the same sort of mathematical thinking applied to volumes in section 6.1, the length of a curve, $f(x)$, over an interval $[a, b]$ can be approximated by a series of line segments measured over increasingly smaller intervals-the length of curve is the sum of the length of the line segments.
Split the interval $[a, b]$ into n subintervals. Then (just like when you first encountered Riemann sums) $\Delta x=\frac{b-a}{n}$. From the Pythagorean Theorem, (length of each segment) $=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$. From the Mean Value Theorem: there exists an x_{i} in each subinterval such that $\Delta y_{i}=f^{\prime}\left(x_{i}\right) *\left(a_{i}-a_{i-1}\right)=f^{\prime}\left(x_{i}\right) * \Delta x$. Substitution and simplification gives us a formula for the length of each line segment:
(length of each segment) $=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{(\Delta x)^{2}+\left(f^{\prime}\left(x_{i}\right) * \Delta x\right)^{2}}=\sqrt{1+\left[f^{\prime}\left(x_{i}\right)\right]^{2}} * \Delta x$.

As the number of intervals, n, approaches infinity (i.e. \|I $P \|$ approaches 0), the resulting Riemann sum yields a formula:

$$
\begin{gathered}
L=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \sqrt{1+\left[f^{\prime}\left(x_{i}\right)\right]^{2}} * \Delta x \\
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{a}^{b} \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x
\end{gathered}
$$

Example A: Find the length of a curve over the interval $[2,4]$ where $f^{\prime}(x)=\sqrt{x^{5}-1}$. Answer: $\frac{16}{7}(16-\sqrt{2})$

Example B: Find the length of the curve $m(x)=2(x-3)^{3 / 2}$ on the interval [3,5]. Answer: $\frac{2}{27}\left(19^{3 / 2}-1\right)$

Example C: Find the length of the graph of $g(x)=\frac{1}{3} x^{3}+\frac{1}{4 x}$ over the interval [1,3]. Answer: $\frac{53}{6}$

NOTE WELL: Real life is almost never as easy as the three examples above, which is why (in upcoming sections) we will be greatly expanding our list of techniques for finding integrals.

