Calculus 141, section 6.7 Parametrized Curves

notes by Tim Pilachowski
Most of the curves you have encountered in Calculus so far have been functions, but not all curves are functions. A good example is the unit circle, with equation $x^{2}+y^{2}=$ 1. In Trigonometry, you considered the unit circle traversed counterclockwise from (1, 0) once around to where you started. The result was defining the x - and y-coordinates as $x=\cos t$ and $y=\sin t$ with t moving from 0 to 2π. In other words, while the unit circle itself cannot be expressed as $y=$ (function of x), the x-coordinates on the circle can be expressed as a function of a parameter t, as can the y-coordinates. A more
 formulaic way of expressing this is to say that the unit circle can be parametrized by the function

$$
P(t)=(\cos t, \sin t) \quad \text { for } 0 \leq t \leq 2 \pi
$$

Example A: Consider the curve parametrized by $x=2 \cos t$ and $y=2 \sin t$ for t moving from 0 to 2π. Answers: center $(0,0)$, radius $=2$, counterclockwise from $(2,0)$, once

Example B: Consider $x=\cos (2 t)$ and $y=\sin (2 t)$ for t moving from 0 to 2π. Answers: center (0,0), radius $=1$, counterclockwise from (1,0), twice

Example C: Consider the curve parametrized by $x=\sin t$ and $y=\cos t$ for t moving from 0 to 2π. This is not the same as the unit circle considered in the introduction. Answers: center (0,0), radius $=1$, clockwise from (0,1), once

Example D: Consider $x=1+\cos (t)$ and $y=2-\sin (t)$ for t moving from 0 to 2π. Answers: center (1,2), radius $=1$, clockwise from (2,2), once

Example E: Consider $x=2 t, y=1-t$, for all t. Answer: $y=1-0.5 x$

In WebAssign, you'll take a look at a case of horizontal/vertical lines.
What do you think would happen:
If the parametric equation for x were linear and the parametric equation for y were quadratic?
If the parametric equation for x were quadratic and the parametric equation for y were linear?
If both were quadratic?
Example F: Consider $x=-e^{t-1}, y=e^{t}-1$. Answer: $y=-e x-1, x<0$

Example G: Consider $x=t^{3}-3 t^{2}, y=t^{3}-3 t$. Answer: see graph

