Calculus 141, section 6.8 Parametric Equations, Length \& Surface Area

 notes by Tim PilachowskiDo you remember the formula for length of a curve derived in section 6.2:

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \quad ?
$$

The formula for length of a curve C defined by parametric functions is similar, and yields a similar result:

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Note that if C is defined by $x=t$ and $y=f(t)$, we would have almost the exact same thing as the 6.2 formula, but in terms of t rather than x. Note also that while C can often be parametrized in more than one way, each set of parametric equations, when inserted into the formula, will yield the same result. That is, the length of a curve is not dependent upon which parametric equations are used.

Example (1) [a) Lecture 6.7 the unit circle, b) Lecture 6.7 Example D]

$P(t)=(\cos t, \sin t)$ and $P(t)=(1+\cos t, 2-\sin t) \quad$ for $0 \leq t \leq 2 \pi$ Answers: $2 \pi, 2 \pi$

Example (2) [Lecture 6.7 Example A] Example A from lecture notes for section 6.7: $x=2 \cos t$ and $y=2 \sin t$ for t moving from 0 to 2π.

Answer: 4π

Example (3) [Lecture 6.7

Since an ellipse can be expressed parametrically as $x=a \cos (t)$ and $y=b \sin (t)$, the length formula is useful in proving a geometric formula for the circumference of an ellipse, but requires integration techniques we don't have yet.

Example (4) [Lecture 6.7 Example E]: Given the parametric equations $x=2 t$ and $y=1-t$, find the length of the curve from $t=0$ to $t=5$. Answer: $5 \sqrt{5}$

The formula for surface area developed in the text relies on work done in section 6.3 , which is not included in our syllabus. The basic principle involves a curve C, expressed parametrically, rotated about the x-axis. You might think of it as the length formula used above given a circumference of $2 \pi r$ by the rotation. The formula for surface area of the rotated curve C is:

$$
S=\int_{a}^{b} 2 \pi g(t) \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Example (5) [Lecture 6.7 Example A revised]: Find the surface area of the figure obtained by rotating the graph of $x=2 \cos t$ and $y=2 \sin t$ for t moving from 0 to π. Answer: 16π

