Calculus 141, section 7.2 The Number " e " and $\ln (x)$ notes by Tim Pilachowski

Question from 7.1: What common functions are their own inverse?

1) $f(x)=\frac{1}{x}$, since $f\left(\frac{1}{x}\right)=\frac{1}{\frac{1}{x}}=x$ for all values of $x \neq 0$. This satisfies both $f(a)=b \Rightarrow f^{-1}(b)=a$ and $f \circ f^{-1}=f^{-1} \circ f=x$ requirements to be its own inverse function. Notice, too, that the graph of $f(x)=\frac{1}{x}$ is symmetric with respect to itself across the line $y=x$.

2) $f(x)=x$ is also its own inverse; it meets the same necessary requirements.

And now for something completely different (section 7.2): Who was Euler? And why does he have a number named after him? More on this later. First, some information you'll need for homework.

By definition, the natural logarithm $\ln x=\int_{1}^{x} \frac{1}{t} d t$ and $\frac{d}{d x}(\ln x)=\frac{1}{x}$, both with domains of $x>0$.
The inverse of the natural logarithm is the natural exponential function $y=e^{x}$, with $\frac{d}{d x}\left(e^{x}\right)=e^{x}$.
Because they are inverse functions, it will always be true that $e^{\ln x}=x$ and $\ln \left(e^{x}\right)=x$ for all x in the domain. All the usual differentiation rules apply: product rule, quotient rule, and chain rule.

Example A: Given $h(x)=e^{x^{2}-x}$, determine the location of any relative extrema. Answer: $\left(\frac{1}{2}, \frac{1}{\sqrt[4]{e}}\right)$

For some homework, you'll also need implicit differentiation (section 3.6).
Example B: Given $e^{x y}=2 x+y$, find $\frac{d y}{d x}$. Answer: $\frac{2-y e^{x y}}{x e^{x y}-1}$

Example C: Find the area A of the region bounded by the graphs of $f(x)=e^{x / 2}$ and $g(x)=\frac{\ln (x+1)}{x+1}$ on [0,3].
 Answer: $2 e^{3 / 2}-\frac{(\ln 4)^{2}}{2}-2$

Example D: Let $p(x)=e^{x}+\frac{1}{4 e^{x}}$. Find the length of the curve L on the interval [0, 1]. Answer: $e-\frac{1}{4 e}-\frac{3}{4}$

