
Calculus 141, section 7.2 The Number “e” and ln(x) 
notes by Tim Pilachowski 
 

Question from 7.1: What common functions are their own inverse? 
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2) ( ) xxf =  is also its own inverse; it meets the same necessary requirements. 

 

And now for something completely different (section 7.2): Who was Euler? And why does he have a number 

named after him? More on this later. First, some information you’ll need for homework. 
 

By definition, the natural logarithm ∫=
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ln = , both with domains of x > 0. 

The inverse of the natural logarithm is the natural exponential function xey = , with ( ) xx
ee
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d
= . 

Because they are inverse functions, it will always be true that xe
x

=
ln  and ( ) xex

=ln  for all x in the domain. 

All the usual differentiation rules apply: product rule, quotient rule, and chain rule. 
 

Example A: Given ( ) xx
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, determine the location of any relative extrema.   Answer: 
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For some homework, you’ll also need implicit differentiation (section 3.6). 

Example B: Given yxexy
+= 2 , find 
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Example C: Find the area A of the region bounded by the graphs of ( ) 2
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Example D: Let ( )
x

x
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+= . Find the length of the curve L on the interval [0, 1].    Answer: 
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