
Calculus 141, section 7.5 Inverse Trigonometric Functions 
notes by Tim Pilachowski 
 

If you haven’t gone back to review the basics of trig functions, now is a good time to do so. One method to 

remember values is based on the unit circle. Another uses ratios from a right triangle. 
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Now, since the trig functions, like all periodic functions, are not one-to-one, we can only talk about them having 

an inverse on an interval. Specifically, we need an interval on which the function is strictly increasing or 

decreasing (cf. section 7.1, theorem 7.5). For sine, the interval [– π/2, π/2], with a range of [– 1, 1], satisfies this 

condition. Thus we can say: 
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In words, sin–1 x is the unique angle between – π/2 and π/2 whose sine is x. I’ll use the notation sin–1 

consistently, although “arcsin” is just as common. WebAssign uses “asin( )”. 
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Since cosine is decreasing on the interval [0, π], we can define 
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Example B: Evaluate 
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Note that the range of cos–1 implies that the angle is in Quadrant I. An alternate method would, of course, be to 

use the identity sin2x + cos2x = 1. Once you have determined sine and cosine, any of the other trig functions can 

be found using its definition. 
 

For tangent, an interval between asymptotes is convenient, since tangent is increasing on any of these. 
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When called upon to evaluate one of the other inverse trig functions, you can think in terms of reciprocals. 
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The inverse trig functions can be differentiated: 

ydx

dy

dx

dy
yx

dx

d
y

dx

d
xyxy

cos

1
1cosation differentiimplicit  viasinsinsin 1

=→=→=→=→=
−

 

Note that on the (open interval) range of sin–1 x, (– π/2, π/2), cos y > 0, and we can substitute 
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Note that the derivative of sin–1 x is not defined for x = –1, nor for x = 1. 
 

Example D: Find the first derivative of ( ) 21sin xxf −
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The derivatives of tan–1 x and sec–1 x can be found using a similar process to the one used above for sin–1 x. 
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Similarly we can derive the following. 
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Results are not really a surprise given the identity sin x = cos (π/2 – x) meaning that 
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The corresponding integral identities are 
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The text does examples of using completing the square to rewrite an integral into an equivalent form so that the 

formulae above can be used to get sin–1 (examples 4 & 5) and tan–1 (examples 8 & 9). These two formulae are 

the only ones you’ll need for the practice exercises and for WebAssign. I’m going to tackle sec–1 as an 

illustration of both completing the square and substitution. 
 

Example E: Evaluate 
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A look ahead to section 8.3: 
 

The Pythagorean formula and triangle ratios from Trigonometry gives us a way to remember which inverse trig 

form from section 7.5 is which. 
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