Calculus 141, section 7.8 Differential Equations (Methods)

notes by Tim Pilachowski
Section 7.7 introduced differential equations (DEs). Section 7.8 provides two methods for solving DEs. The first type is a separable differential equation, i.e. one in which we can separate elements containing the x variable from ones containing the y variable.

Separable DEs will generally have one of two forms:

$$
\frac{d y}{d x}=f(x) g(y) \Rightarrow \frac{d y}{g(y)}=f(x) d x \quad \frac{d y}{d x}=\frac{f(x)}{g(y)} \Rightarrow g(y) d y=f(x) d x
$$

Example A: The temperature y of a cup of coffee changes with time (Newton's Law of Cooling). Find an equation to express temperature as a function of time. Answer: $y=K e^{-0.1 t}+70$

We can easily check this general solution using the methods of section 7.7. Note several things:

1) The coefficient -0.1 is a "constant of proportionality"specific to this particular coffee cup, and would have been found via observation.
2) Domain of $\ln (y-70)$, normally a concern, is not a worry in this case since the temperature of the coffee will not go below room temperature. Indeed, our equation for y has a horizontal asymptote at $y=70$.
3) While each of the two integrals would usually be written with a "+ C ", since these are arbitrary constants the two can be combined on one side of the equation.
4) We could leave the equation with e^{C} as the coefficient, but again since C is arbitrary, e^{C} will itself be a constant and has been written more simply as K.

Example A extended: If a cup of coffee in a 70° room began at 190°, what is its temperature after 5 minutes?
Answer: $y(5)=120 e^{-0.5}+70 \cong 142.78^{\circ} \mathrm{F}$

Example B: Solve $y^{\prime}=\frac{3 t^{2}}{y^{2}}$. Answer: $y=\sqrt[3]{3 t^{3}+C}$

We already checked this result—see lecture notes 7.7 Example E—and found the particular solution for which $y^{\prime}=\frac{1}{3}$. Note that since C_{1} is an arbitrary constant, we easily and legally replaced $3 * C_{1}$ with a more generic C. This method may seem pretty cavalier-we're almost treating $\frac{d y}{d t}$ as if it is a fraction, which of course it is not. Is our procedure legal? Of course, and we can justify it using substitution. When we have $f(y) \frac{d y}{d t}=g(t)$, we take the integral of both sides with respect to t. Letting $u=y$, then $d u=\frac{d y}{d t} d t$, and thus
$\int f(y) \frac{d y}{d t} d t=\int f(u) d u=\int f(y) d y$.
Example C: Solve $y^{\prime}-2 t y=t . A n s w e r: ~ y=C e^{t^{2}}-\frac{1}{2}$

Once again a complicated constant was replaced with the more generic C. Also note that the particular solution we checked in section 7.7 lecture notes Example C fit this solution.

Example D: Solve $y^{\prime}=\left(1+y^{2}\right) e^{x}$. Answer: $y=\tan \left(e^{x}+C\right)$

Note how, while substitution helped solve the integral in Example C, it would not have worked here. We had to recognize $\tan ^{-1}$.

We now turn to a more difficult scenario: linear first-order differential equations. These are of the form

$$
\frac{d y}{d x}+P(x) * y=Q(x)
$$

To solve these, we need to do some clever things. First we'll define $S(x)=\int P(x) d x$, i.e. an anti-derivative. Next, multiply both sides of the DE by $e^{S(x)}$ and integrate with respect to x.

$$
\begin{aligned}
e^{S(x)} \frac{d y}{d x}+P(x) e^{S(x)} y & =e^{S(x)} Q(x) \\
\int e^{S(x)} \frac{d y}{d x} d x+\int P(x) e^{S(x)} y d x & =\int e^{S(x)} Q(x) d x \\
\int f g^{\prime}+g d x & = \\
f g & = \\
e^{S(x)} y & =\int e^{S(x)} Q(x) d x \\
y & =e^{-S(x)} \int e^{S(x)} Q(x) d x
\end{aligned}
$$

In using this formula, it will be important to correctly identify P and Q, and also to correctly construct the integrating factor $e^{S(x)}$. It is called an integrating factor because it transforms the left-hand side into a form that can be integrated because it is the result of differentiating by the Product Rule.

Example E: Solve $x y^{\prime}=x^{2}+3 y, x>0$. Answer: $y=-x^{2}+C x^{3}, x>0$

Note that S can be any anti-derivative, so we might as well pick the simplest one and make our life a little easier.
Also note, that instead of using a memorized formula $y=e^{-S(x)} \int e^{S(x)} Q(x) d x$, I wrote the left-hand side as the antiderivative of a product of functions. Feel free to use whichever method works for you.

Example E extended: Given the initial condition $y(1)=2$, find the particular solution. Answer: $y=3 x^{3}-x^{2}$

Example F: An anti-coagulant is introduced intravenously at a rate of 0.5 mg per hour. At the same time, 2% of the drug in the bloodstream is absorbed into the body. Solve $y^{\prime}=-0.02 y+0.5$ to get an equation describing the amount of anti-coagulant in the bloodstream. Answer: $25+C e^{-0.02 t}$

Examples G: $x y^{\prime}=x^{2}+y^{2}$ is not linear, and $x y^{\prime \prime}=x^{2}+y$ is not first-order, so we cannot use the integrating factor method for either of these.

Bonus Example H: Solve $y^{\prime}-y^{3} \cos t=0$.
This one is easily separable.

$$
\begin{aligned}
y^{\prime} & =y^{3} \cos t \Rightarrow y^{-3} \frac{d y}{d t}=\cos t \Rightarrow \int y^{-3} d y=\int \cos t d t \Rightarrow-\frac{1}{2} y^{-2}=\sin t \Rightarrow-\frac{1}{2 \sin t}+C=y^{2} \\
& \Rightarrow y= \pm \sqrt{\frac{1}{2 \sin t}+C}
\end{aligned}
$$

Notes: The general solution is actually two functions, the "plus" and "minus" versions. The correct one would be determined by initial conditions, when available.

Bonus Example I: Solve $y^{\prime}+2 t y=6 t$.
This is already in the standard form for a linear first-order DE.
$P(t)=2 t$ and $Q(t)=6 t$. Then $S(t)=\int 2 t d t=t^{2}$ and the integrating factor is $e^{t^{2}}$.
$e^{t^{2}} y^{\prime}+2 t e^{t^{2}} y=6 t e^{t^{2}} \Rightarrow \int \frac{d}{d t}\left[e^{t^{2}} y\right] d t=\int 6 t e^{t^{2}} d t \Rightarrow u=t^{2}, d u=2 t d t \Rightarrow e^{t^{2}} y=3 \int e^{u} d u$
$\Rightarrow e^{t^{2}} y=3 e^{t^{2}}+C \Rightarrow y=3+C e^{-t^{2}}$

