Calculus 141, section 8.1 Integration by Parts

notes by Tim Pilachowski
In an integral such as $\int t \sin (6 t) d t$, substitution won't work. While we can identify $6 t$ as an "inside" function, and its derivative as 6 , there is nothing in either u or $d u$ to substitute for the t which is located "outside" the sine. A clue as to how to approach this integral is contained in the fact that it is a product of two functions. Can we find a way to "work backward" from the product rule? The answer is "Yes", and it's called integration by parts.

Recall the product rule: $\frac{d}{d x}[u * v]=u * v^{\prime}+v * u^{\prime}$. From an anti-derivative point of view:

$$
\begin{aligned}
& \int\left[u * v^{\prime}+v * u^{\prime}\right] d x
\end{aligned}=u * v \begin{aligned}
\int u d v+\int v d u & =u * v \\
& =u * v-\int v d u
\end{aligned}
$$

giving us integration by parts. We can also perform integration by parts with a definite integral.

$$
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Memorize this formula. The trick is in choosing u and $d v$ well: we want the resulting integral to be no more (and hopefully less) intimidating than the original.
Example A: Evaluate $\int x e^{x} d x$. Answer: $x e^{x}-e^{x}+C$

Example B: Evaluate $\int_{1}^{2} x^{2} \ln x d x$. Answer: $\frac{8}{3} \ln 2-\frac{7}{9}$

Example C: $\int \ln x d x$. Answer: $x \ln x-x+C$

Hint: There are some WebAssign questions for which this will be a useful technique.

So, how does one choose u and $d v$ wisely? Herbert E. Kasube, in a 1983 article (American Mathematical Monthly 90, pp. 210-211) proposes the acronymn LIATE (logarithmic, inverse trig, algebraic, trig, exponential) for choosing $u ; d v$ will be "everything else". In Example A above, there were no logarithms or inverse trig functions, so $u=x$ was chosen as the algebraic function. In examples B and $\mathrm{C} u$ was chosen to be the logarithmic function.

Example D: Evaluate $\int x^{2} e^{x} d x$. Answer: $e^{x}\left(x^{2}-2 x+2\right)+C$

Example E: Evaluate $\int x^{n} e^{x} d x$. Answer: $x^{n} e^{x}-n \int x^{n-1} e^{x} d x$

This type of formula is called a reduction formula. In this case it would be applied n successive times. (Textbook practice exercises address a reduction formula involving trig functions.)

Example F: Evaluate $\int e^{x} \sin x d x$. Answer: $\frac{1}{2} e^{x}(\sin x-\cos x)+C$

Example G: Evaluate $\int 2 x e^{x^{2}} d x$. Answer: $e^{x^{2}}+C$

Example H. Evaluate $\int x^{2} \sin ^{-1} x d x$. Answer: $\frac{1}{3} x^{3} \sin ^{-1} x+\frac{1}{3} \sqrt{1-x^{2}}-\frac{1}{9}\left(1-x^{2}\right)^{3 / 2}+C$
This one involves not only integration by parts, but also a semi-complicated integration by substitution.

