Calculus 141, section 8.5 Symbolic Integration

notes by Tim Pilachowski
Back in my day (mid-to-late 1970s for high school and college) we had no handheld calculators, and the only electronic computers were mainframes at universities and government facilities. After learning the integration techniques that you are now learning, we were sent to Tables of Integrals, which listed results for (often) hundreds of simple to complicated integration results. Some could be evaluated using the methods of Calculus 1 and 2, others needed more esoteric methods. It was necessary to scan the Tables to find the form that was needed. If it was there, great! If not...

The UMCP Physics Department posts one from the textbook they use (current as of 2017) at www.physics.umd.edu/hep/drew/IntegralTable.pdf.
A similar Table of Integrals from
http://www.had2know.com/academics/table-of-integrals-antiderivative-formulas.html
is appended at the end of this Lecture outline.
Example F from 8.1: Evaluate $\int e^{x} \sin x d x$ using a Table of Integrals. Answer: $\frac{1}{2} e^{x}(\sin x-\cos x)+C$
If you remember, we had to define I, do a series of two integrations by parts, then solve for " $I=$ ".
From the Had2Know Table of Integrals below:

$$
\begin{aligned}
& \text { 98. } \int e^{a x} \sin (b x) d x= \\
& \frac{e^{a x}}{a^{2}+b^{2}}[a \sin (b x)-b \cos (b x)]
\end{aligned}
$$

Identify $a=\quad$ and $b=$, then plug those values in, and voila!
Now, with the development of handheld calculators and personal computers, much more is available to us, including software that will do all the work. The text mentions Derive, Maple, Mathematica, and MATLAB, and gives examples of Mathematica commands. You'll be using MATLAB in Math 241 and several other courses. [Be careful - software sometimes works in the complex plane, not just the real number plane!]

Example F from 8.1: Evaluate $\int e^{x} \sin x d x$ using MATLAB. Answer: $\frac{1}{2} e^{x}(\sin x-\cos x)+C$

```
>> syms x
>> int(exp(x)*sin(x))
ans =
-(exp(x)*(\operatorname{cos}(x) - sin(x)))/2
```

Notice that 1) MATLAB assumes integration "dx" since x is the only defined variable, and 2) MATLAB does not put a " +C " in its indefinite integrals.
Example F from 8.1 revised: Evaluate $\int_{0}^{\pi / 3} e^{x} \sin x d x$ using MATLAB. Answer: $\frac{1}{2}\left(e^{\pi / 3}\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right)\right)+\frac{1}{2}$

```
>> int(exp(x)*sin(x),0,pi/3)
ans =
(exp(pi/3)*(3^(1/2)/2 - 1/2))/2 + 1/2
```

Notice that 1) "syms x" was not needed, since we had previously defined our variable, and 2) parentheses in the answer are very carefully placed by MATLAB.

So, why do we have to take courses like Calculus I and Calculus II to learn integration techniques if we have software that will do it for us?

Two reasons:
1)
2)

Example A: Evaluate $\int e^{-x^{2}} d x$ using MATLAB.

```
>> int(exp(-x^2))
    ans =
    (pi^(1/2)*erf(x))/2
```

The "erf (x)" is MATLAB's error function.
There are some functions whose integrals cannot be evaluated. This is why we need the numeric approximation methods of section 8.6.

Basic Formulas

1. $\int a x^{n} d x=\frac{a}{n+1} x^{n+1}$
2. $\sin (x)=\cos \left(x-\frac{\pi}{2}\right)$
3. $\int \frac{d x}{a x+b}=\frac{1}{a} \ln |a x+b|$
4. $\sin ^{2}(x)=1-\cos ^{2}(x)$
5. $\int a b^{x} d x=\frac{1}{\ln b} a b^{x}$
6. $\sin (2 x)=2 \sin (x) \cos (x)$
7. $\int \sin a x d x=\frac{-\cos a x}{a}$
8. $\cos (2 x)=2 \cos ^{2}(x)-1$
9. $\int \cos a x d x=\frac{\sin a x}{a}$
10. $\tan (x)=\frac{1-\cos (2 x)}{\sin (2 x)}$
11. $\int \tan a x d x=\frac{\ln |\cos a x|}{a}$
12. $a \sin (x)+b \cos (x)=$
13. $\int u d v=u v-\int v d u$

$$
\sqrt{a^{2}+b^{2}} \sin \left(x+\tan ^{-1} \frac{b}{a}\right)
$$

Rational Functions

14. $\int \frac{x}{a x+b} d x=\frac{x}{a}-\frac{b}{a^{2}} \ln |a x+b|$
15. $\int \frac{x^{2}}{a x+b} d x=\frac{x^{2}}{2 a}-\frac{b x}{a^{2}}-\frac{3 b^{2}}{a^{3}}+$
$\frac{b^{2}}{a^{1}} \ln |a x+b|$
16. $\int \frac{d x}{(a x+b)^{2}}=\frac{-1}{a(a x+b)}$
17. $\int \frac{x}{(a x+b)^{2}} d x=\frac{b}{a^{2}(a x+b)}+\frac{1}{a^{2}} \ln |a x+b|$
18. $\int \frac{x^{2}}{(a x+b)^{2}} d x=\frac{a x+b}{a^{3}}-\frac{b^{2}}{a^{3}(a x+b)}-$

$$
\frac{2 b}{a^{1} \ln }|a x+b|
$$

19. $\int \frac{d x}{x(a x+b)}=\frac{1}{b} \ln \left|\frac{x}{a x+b}\right|$
20. $\int \frac{d x}{x^{2}(a x+b)}=\frac{a}{b^{2}} \ln \left|\frac{a x+b}{x}\right|-\frac{1}{b x}$
21. $\int \frac{d x}{x^{2}(a x+b)^{2}}=\frac{2 a}{b^{3}} \ln \left|\frac{a x+b}{x}\right|-\frac{2 a x+b}{b^{2} x(a x+b)}$
22. $\int \frac{d x}{x\left(x^{2}+a^{2}\right)}=\frac{1}{2 a^{2}} \ln \left(\frac{x^{2}}{x^{2}+a^{2}}\right)$
23. $\int \frac{d x}{x^{2}\left(x^{2}+a^{2}\right)}=\frac{-1}{a^{2} x}-\frac{1}{a^{3}} \tan ^{-1}\left(\frac{x}{a}\right)$
24. $\int \frac{x^{2}}{\left(x^{2}+a^{2}\right)^{2}} d x=\frac{1}{2 a} \tan ^{-1}\left(\frac{x}{a}\right)-\frac{x}{2\left(x^{2}+a^{2}\right)}$
25. $\int \frac{d x}{x\left(x^{2}-a^{2}\right)}=\frac{1}{2 a^{2}} \ln \left|\frac{x^{2}-a^{2}}{x^{2}}\right|$
26. $\int \frac{d x}{x^{2}\left(x^{2}-a^{2}\right)}=\frac{1}{a^{2} x}+\frac{1}{2 a^{3}} \ln \left|\frac{x-a}{x+a}\right|$
27. $\int \frac{x^{2}}{\left(x^{2}-a^{2}\right)^{2}} d x=\frac{x}{2\left(a^{2}-x^{2}\right)}-\frac{1}{4 a} \ln \left|\frac{x+a}{x-a}\right|$
28. $\int \frac{d x}{x^{2}+a x+b}=$

$$
\begin{cases}\frac{2}{\sqrt{4 b-a^{2}}} \tan ^{-1}\left(\frac{2 x+a}{\sqrt{4 b-a^{2}}}\right) & \text { if } 4 b>a^{2} \\ \frac{-1}{x+a / 2} & \text { if } 4 b=a^{2} \\ \frac{1}{\sqrt{a^{2}-4 b}} \ln \left|\frac{2 x+a-\sqrt{a^{2}}}{2 x+a+\sqrt{a^{2}-4 b}}\right| & \text { if } 4 b<a^{2}\end{cases}
$$

29. $\int \frac{x}{x^{2}+a x+b} d x=\frac{1}{2} \ln \left|x^{2}+a x+b\right|+$

$$
\begin{cases}\frac{a}{\sqrt{4 b-a^{2}}} \tan ^{-1}\left(\frac{2 x+a}{\sqrt{4 b-a^{2}}}\right) & \text { if } 4 b>a^{2} \\ \frac{a}{2 x+a} & \text { if } 4 b=a^{2} \\ \frac{-a}{2 \sqrt{a^{2}-4 b}} \ln \left|\frac{2 x+a-\sqrt{a^{2}-4 b}}{2 x+a+\sqrt{a^{2}-4 b}}\right| & \text { if } 4 b<a^{2}\end{cases}
$$

30. $\int \frac{x^{2}}{x^{2}+a x+b} d x=x-\frac{a}{2} \ln \left|x^{2}+a x+b\right|+$

$$
\begin{cases}\frac{a^{2}-2 b}{\sqrt{4 b-a^{2}}} \tan ^{-1}\left(\frac{2 x+a}{\sqrt{4 b-a^{2}}}\right) & \text { if } 4 b>a^{2} \\ \frac{-a^{2}}{4 x+2 a} & \text { if } 4 b=a^{2} \\ \frac{a^{2}-2 b}{2 \sqrt{a^{2}-4 b}} \ln \left|\frac{2 x+a-\sqrt{a^{2}-4 b}}{2 x+a+\sqrt{a^{2}-4 b}}\right| & \text { if } 4 b<a^{2}\end{cases}
$$

31. $\int \frac{d x}{x^{2}+a^{2}}=\frac{11}{6 x^{2}} \ln \left|\frac{x^{3}+3 x+a^{2}}{x^{2}-a x+a^{2}}\right|+$
$\frac{1}{\sqrt{\operatorname{Tax}^{2}}} \tan ^{-1}\left(\frac{2 \pi-q}{\sqrt{2}}\right)$
32. $\int \frac{x^{x}}{x^{4}+a^{4}} d x=\frac{1}{4 x} \ln \left|\frac{x^{3}-a x+a^{3}}{x^{3}+2 \pi x+a^{2}}\right|+$ $\frac{1}{\sqrt{2 a}} \tan ^{-1}\left(\frac{2 x-a}{\sqrt{2}}\right)$
 $\frac{1}{2 \sqrt{2^{2}}} \tan ^{-1}\left(\frac{\sqrt{n}}{a^{2}-x^{2}}\right)$
33. $\int \frac{x}{x^{x}+a^{2}} d x=\frac{-1}{2 a^{2}} \tan ^{-1}\left(\frac{a^{2}}{x^{2}}\right)$
34. $\int \frac{x^{3}}{x^{4}+a^{2}} d x=\frac{1}{4 \sqrt{2}} \ln \left|\frac{x^{2}-\sqrt{3} \sqrt{3 x+a^{2}}}{x^{2}+\sqrt{2 n} x+a^{2}}\right|+$

$$
\frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{\sqrt{2}}{a^{2}-x^{2}}\right)
$$

Square Roots

36. $\int \sqrt{a x+b} d x=\frac{2}{2}(a x+b)^{3 / 2}$
37. $\int \frac{d x}{\sqrt{a x+b}}=\frac{2}{a} \sqrt{a x+b}$
38. $\int x \sqrt{a x+b} d x=\frac{a x-5}{1 a^{2}}(a x+b)^{3 / 2}$
39. $\int \frac{x}{\sqrt{a x+b}} d x=\frac{\frac{2 x-4}{3}}{3 a^{2}} \sqrt{a x+b}$
40. $\int \frac{\sqrt{a x+5}}{x} d x=2 \sqrt{a x+b}+$
$\begin{cases}\sqrt{b} \ln \left|\sqrt{\left.\frac{a x+b}{\sqrt{x+b}+\sqrt{b}} \right\rvert\,}\right| & \text { if } b>0 \\ -2 \sqrt{-b} \tan ^{-1}\left(\sqrt{\frac{a x+b}{-b}}\right) & \text { if } b<0\end{cases}$
41. $\int \frac{d x}{x \sqrt{1 a r+3}}=$
$\begin{cases}\frac{1}{\sqrt{6}} \ln \left\lvert\, \frac{\sqrt{a x+b}-\sqrt{6} \mid}{\sqrt{a x+b}+\sqrt{b}}\right. & \text { if } b>0 \\ \frac{2}{\sqrt{-b}} \tan ^{-1}\left(\sqrt{\frac{a x+b}{-b}}\right) & \text { if } b<0\end{cases}$
42. $\int \sqrt{\frac{a x+5}{r x+s}} d x=\frac{2(a x-(x) \mid}{r^{2}} \int \frac{u^{3}}{\left[w^{2}-4 /[]^{2}\right.} d u$ where $u=\sqrt{\frac{a x+b}{T x+s}}$, see eqs. $\left.24 \& 2\right\rangle$
43. $\int \frac{d x}{a \sqrt{x}+b}=\frac{2 \sqrt{x}}{a}-\frac{3}{3^{2}} \ln |a \sqrt{x}+b|$
44. $\int \frac{\sqrt{x}}{a \sqrt{x}+b} d x=\frac{x}{a}-\frac{3 \sqrt{x}}{a^{2}}+\frac{3 y^{2}}{a^{2}} \ln |a \sqrt{x}+b|$
45. $\int \frac{x}{\sqrt{x}+\sqrt{x}+6} d x=\frac{2}{x^{3} x^{3 / 2}}-\frac{\sqrt[2 x]{x^{2}}}{x^{2}}+\frac{\frac{3 y}{2}}{x^{2}} \sqrt{x}-$

$$
\frac{\mathbf{m}^{x}}{a^{x}} \ln |a \sqrt{x}+b|
$$

46. $\int \sqrt{x+a \sqrt{x}+b} d x=$

$$
\left(\frac{2}{1} x-\frac{a}{y} \sqrt{x}+\frac{3}{x}-\frac{a^{3}}{4}\right)(x+a \sqrt{x}+b)^{3 / 2}-
$$

$$
\left(a b-\frac{a^{3}}{4}\right) \ln \left|\sqrt{x}+\frac{a}{2}+\sqrt{x+a \sqrt{x}+b}\right|
$$

47. $\int \sqrt{x^{2}+a^{2}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}+$

$$
\frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2}+a^{2}}\right|
$$

48. $\int \sqrt{x^{2}-a^{2}} d x=\frac{1}{2} T \sqrt{x^{2}-a^{2}}-$
$\frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2}-a^{2}}\right|$
49. $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left|\frac{x}{a}\right|$
50. $\int x^{2} \sqrt{x^{2}+a^{2}} d x=$

$$
\frac{2 x^{3}+a^{2} x}{a^{2}} \sqrt{x^{2}+a^{2}}-\frac{a^{4}}{8} \ln \left|x+\sqrt{x^{2}+a^{2}}\right|
$$

51. $\int x^{2} \sqrt{x^{2}-a^{2}} d x=$

$$
\frac{2 x^{2}-a^{3} x}{a} \sqrt{x^{2}-a^{2}}-\frac{a^{4}}{8} \ln \left|x+\sqrt{x^{2}-a^{2}}\right|
$$

52. $\int x^{2} \sqrt{a^{2}-x^{2}} d x=$
$\frac{2 a^{3}-a^{3} x}{a} \sqrt{a^{2}-x^{2}}+\frac{a^{4}}{B} \sin ^{-1}\left(\frac{x}{a}\right)$
53. $\int \frac{\sqrt{x^{2}+a^{1}}}{x} d x=\sqrt{x^{2}+a^{2}}-$
$a \ln \left|\frac{a+\sqrt{a^{2}+a^{2}}}{z}\right|$
54. $\int \frac{\sqrt{x^{2}-a^{2}}}{x} d x=\sqrt{x^{2}-a^{2}}-4 \sec ^{-1}\left(\frac{x}{a}\right)$

殦. $\int \frac{\sqrt{a^{2}-x^{2}}}{x} d x=\sqrt{a^{2}-x^{2}}-$
$a \ln \left|\frac{a+\sqrt{a^{2}-x^{3}}}{x}\right|$
56. $\int \frac{\sqrt{x^{2}+a^{2}}}{x^{2}} d x=-\frac{\sqrt{x^{2}+x^{2}}}{x}+$
$\ln \left|x+\sqrt{x^{2}+a^{2}}\right|$
57. $\int \frac{\sqrt{x^{2}-a^{1}}}{x^{2}} d x=-\frac{\sqrt{x^{2}-4^{2}}}{x}+$
$\ln \left|x+\sqrt{x^{2}-a^{2}}\right|$
58. $\int \frac{\sqrt{a^{3}-x^{2}}}{x^{2}} d x=-\frac{\sqrt{a^{2}-x^{2}}}{x}-\sin ^{-1}\left(\frac{x}{x}\right)$
59. $\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left|x+\sqrt{x^{2}+a^{2}}\right|$
60. $\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\| n\left|x+\sqrt{x^{2}-a^{2}}\right|$
61. $\int \frac{d x}{\sqrt{x^{2}}-x^{2}}=\sin ^{-1}\left(\frac{x}{a}\right)$
62. $\int \frac{x^{2}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}-$

$$
\frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2}+a^{2}}\right|
$$

63. $\int \frac{x^{3}}{\sqrt{x^{2}-a^{2}}} d x=\frac{1}{2} x \sqrt{x^{2}-a^{2}}+$ $\frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2}-a^{2}}\right|$
64. $\int \frac{x^{2}}{\sqrt{a^{3}-x^{2}}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{x}}{2} \sin ^{-1}\left(\frac{x}{a}\right)$
65. $\int \frac{d x}{x \sqrt{x^{2}+a^{2}}}=\frac{-1}{a} \ln \left|\frac{a+\sqrt{x^{2}+a^{2}}}{x}\right|$
66. $\int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{4} \sec ^{-1}\left|\frac{x}{a}\right|$
67. $\int \frac{d x}{x \sqrt{a^{2}-x^{2}}}=\frac{-1}{a} \ln \left|\frac{x+\sqrt{a^{2}-x^{2}}}{x}\right|$
68. $\int \frac{d}{x^{3} \sqrt{x^{3}+a^{2}}}=\frac{-\sqrt{x^{1} 1 a^{2}}}{a^{x} x}$
69. $\int \frac{d x}{x^{3} \sqrt{x^{3}-a^{1}}}=\frac{\sqrt{x^{3}-a^{2}}}{a^{1} x}$
70. $\int \frac{d x}{x^{5} \sqrt{a^{2}-x^{2}}}=\frac{-\sqrt{a^{3}-x^{2}}}{a^{2} x}$
71. $\int \frac{d x}{x+\sqrt{x^{2}+a^{2}}}=\frac{x}{\sum^{2}} \sqrt{x^{2}+a^{2}}-$
$\frac{x^{2}}{2^{2}}+\frac{1}{2} \ln \left(x+\sqrt{x^{2}+a^{2}}\right)$
72. $\int \frac{d x}{x+\sqrt{x^{2}-a^{2}}}=\frac{-x}{2^{2}} \sqrt{x^{2}-a^{2}}+$
$\frac{x^{2}}{2^{2}}+\frac{1}{2} \ln \left(x+\sqrt{x^{2}-a^{2}}\right)$
73. $\int \frac{d x}{x+\sqrt{a^{1}-x^{2}}}=\ln \left(x+\sqrt{a^{2}-x^{2}}\right)-$

$$
\frac{1}{4} \ln \left|2 x^{2}-a^{2}\right|+\frac{1}{2} \tan ^{-1}\left(\frac{x}{\sqrt{a^{2}}-2^{2}}\right)
$$

74. $\int \frac{d x}{a+\sqrt{a^{2}-x^{2}}}=\frac{\sqrt{a^{2}-x^{2}}}{x}+$

$$
\tan ^{-1}\left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right)-\frac{a}{x}
$$

Natural Logarithms

75. $\int x^{n} \ln x d x=\frac{x^{n+1} \ln x}{n+1}-\frac{x^{n+1}}{(n+1)^{2}}, n \neq 1$
76. $\int \frac{\ln x}{x} d x=\frac{1}{2}(\ln x)^{2}$

7h. $\int \frac{(\ln x)^{m}}{x} d x=\frac{(\ln x)^{-1}}{m+1}, m \neq-1$
78. $\int \frac{d x}{x \ln x}=\ln |\ln x|$
79. $\int \frac{\ln x}{(x+a)^{2}} d x=\frac{1}{a}\left(\frac{x}{x+a} \ln x-\ln |x+a|\right)$
80. $\int(\ln x)^{2} d x=x\left[(\ln x)^{2}-2 \ln x+2\right]$
81. $\int \ln (a \sqrt{x}+b) d x=$

$$
\left(x-\frac{p}{a^{x}}\right) \ln (a \sqrt{x}+b)-\frac{x}{2}+\frac{b \sqrt{x}}{a}
$$

82. $\int \ln \left(x^{2}+a x+b\right) d x=-2 x-a+$
$\left(x+\frac{a}{2}\right) \ln \left(x^{2}+a x+b\right)+$
$\begin{cases}\sqrt{4 b-a^{2}} \tan ^{-1}\left(\frac{2 x}{\sqrt{4 b-a^{2}}}\right) & \text { if } 4 b>a^{2} \\ 0 & \text { if } 4 b=a^{2} \\ \frac{1}{2} \sqrt{a^{2}-4 b} \ln \left|\frac{2 x+a+\sqrt{a^{2}-3}}{2 x+a-\sqrt{a^{2}-b^{2}}}\right| & \text { if } 4 b<a^{2}\end{cases}$
83. $\int \ln \left(x+\sqrt{x^{2}+a^{2}}\right) d x=-\sqrt{x^{2}+a^{2}}+$ $x \ln \left(x+\sqrt{x^{2}+a^{2}}\right)$
84. $\int \ln \left(x+\sqrt{x^{2}-a^{2}}\right) d x=-\sqrt{x^{2}-a^{2}}+$ $x \ln \left(x+\sqrt{x^{2}-a^{2}}\right)$
85. $\int \ln \left(x-\sqrt{x^{2}-a^{2}}\right) d x=2 x \ln a+$

$$
\sqrt{x^{2}-a^{2}}-x \ln \left(x+\sqrt{x^{2}-a^{2}}\right)
$$

86. $\int \ln \left(x+\sqrt{a^{2}-x^{2}}\right) d x=$

$$
x \ln \left(x+\sqrt{a^{2}-x^{2}}\right)-x-
$$

$$
\frac{n}{2} \ln \left|\frac{a+\sqrt{a^{x}-x^{2}}}{x}\right|
$$

87. $\int \ln \left(a+\sqrt{a^{2}-x^{2}}\right) d x=x+$

$$
x \ln \left(a+\sqrt{a^{2}-x^{2}}\right)-a \sin ^{-1}\left(\frac{\pi}{a}\right)
$$

88. $\int \ln \left(x^{3}+a^{3}\right) d x=x \ln \left(x^{3}+a^{3}\right)-x+$

Exponential Functions

89. $\int x E^{a r} d x=\frac{\pi x^{a n}}{a^{n}}-\frac{e^{a n}}{a^{2}}$
90. $\int x^{2} e^{a x} d x=\frac{x^{7} e^{-1}}{d x}-\frac{2 x^{n}}{x^{2}}+\frac{2 z^{n}}{s^{x}}$
91. $\int e^{\pi \sqrt{x}} d x=\frac{2}{a} \sqrt{x} e^{a \sqrt{x}}-\frac{2}{a^{2}} e^{e^{2}} \sqrt{x}$
92. $\int \frac{d x}{b+e^{n+}}=\frac{\pi}{b}-\frac{1}{b^{3}} \ln \left|b+e^{a x}\right|$
93. $\int \frac{e^{-\pi}}{b+e^{n+2}} d x=\frac{1}{a} \ln \left|b+e^{a z}\right|$
94. $\int \sqrt{e^{a x}+b} d x=\frac{2}{a} \sqrt{e^{a x}+b}+$

$$
\begin{cases}\frac{\sqrt{b}}{a} \ln \left|\sqrt{\sqrt{a^{2++}+b}}-\sqrt{6}\right| & \text { if } b>0 \\ -\frac{2 \sqrt{x}}{\sqrt{3}} \tan ^{-1}\left(\frac{\sqrt{\mathrm{c}^{2+2}+b}}{\sqrt{-5}}\right) & \text { if } b<0\end{cases}
$$

95. $\int \sqrt{b-E^{a x}} d x=\frac{2}{a} \sqrt{b-E^{a x}}+$

$$
\frac{\sqrt{5}}{a} \ln \left|\frac{\sqrt{c^{2 r+x}+\sqrt{2}}-\sqrt{6} \mid}{\sqrt{e^{2}+5}+\sqrt{6}}\right|
$$

96. $\int \frac{d x}{\sqrt{3-\varepsilon^{2}}}=\frac{\sqrt{a}}{a} \ln \left|\sqrt{\sqrt{b-e^{2 x}}-\sqrt{6}}\right|$
97. $\int \frac{d x}{\sqrt{e^{2}+b}}=$
98. $\int e^{a x} \sin (b x) d x=$

$$
\frac{x^{2}+x^{2}}{[a \sin (b x)-b \cos (b x)]}
$$

99. $\int e^{2 x} \cos (b x) d x=$

$$
\frac{x^{-}}{x^{2}+b^{2}}[b \sin (b x)+a \cos (b x)]
$$

100. $\int x e^{\omega x} \sin (b x) d x=\frac{x^{m}}{a^{2}+x^{x}}[a x \sin (b x)-$ $\left.b x \cos (b x)-\frac{a^{x}-b^{x}}{a^{2}+p^{2}} \sin (b x)+\frac{3 x b}{a^{2}+p} \cos (b x)\right]$
101. $\int x e^{a x} \cos (b x) d x=\frac{e^{-x}}{a^{2}+p}[b x \sin (b x)+$ $\left.\operatorname{arcos}(b x)-\frac{a^{x}-p}{a^{x}+p} \cos (b x)-\frac{3 x}{a^{x}+p^{2}} \sin (b x)\right]$

Trigonometric Functions

102. $\int \sin ^{2}(x) d x=\frac{\pi}{2}-\frac{\min / 7 x)}{4}$
103. $\int \sin ^{\frac{1}{2}}(x) d x=-\sin ^{2}(x) \cos (x)-$

$$
\frac{2}{3} \cos ^{3}(x)
$$

104. $\int \cos ^{2}(x) d x=\frac{\pi}{2}+\frac{\sin (2 x)}{4}$
105. $\int \cos ^{2}(x) d x=\sin (x) \cos ^{2}(x)+$

$$
\frac{2}{3} \sin ^{3}(x)
$$

106. $\int \sin ^{2}(x) \cos ^{2}(x) d x=\frac{x}{10}-\frac{\sin (4 x)}{\frac{2}{2}}$

10h. $\int x \sin (x) d x=\sin (x)-x \cos (x)$
108. $\int x^{2} \sin (x) d x=2 \cos (x)+$

$$
2 x \sin (x)-x^{2} \cos (x)
$$

109. $\int x \sin ^{2}(x) d x=\frac{x^{2}}{4}-\frac{x \sin (2 x)}{4}-\frac{x(2 x)}{8}$
110. $\int x^{2} \sin ^{2}(x) d x=\frac{x^{1}}{6}-\frac{x^{7} \sin (2 x)}{4}-$ $\frac{x \max (\mid x+1)}{4}+\frac{\sin (2 x+1}{2}$
111. $\int x \cos (x) d x=\cos (x)+x \sin (x)$
112. $\int x^{2} \cos (x) d x=-2 \sin (x)+$

$$
2 x \cos (x)+x^{2} \sin (x)
$$

113. $\int x \cos ^{2}(x) d x=\frac{x^{3}}{4}+\frac{x \sin \mid(2 x)}{4}+\frac{\cos (2 x)}{\frac{2}{8}}$
114. $\int x^{2} \cos ^{2}(x) d x=\frac{x^{x}}{6}+\frac{x^{2} \sin (2 x)}{4}+$

$$
\frac{x+\pi \cdot[r]}{4}-\frac{\sin |2 r|}{2}
$$

115. $\int \frac{\operatorname{dr}}{\sin ([])}=\ln \left|\frac{1-\cos (x)}{\sin (x)}\right|$
116. $\int \frac{\operatorname{dr}}{\tan (x)}=\ln \left|\frac{1+\operatorname{cin}(x)}{\cos (x)}\right|$
117. $\int \frac{d x}{\sin ^{2}(x)}=-\cot (x)$
118. $\int \frac{d x}{\cos ^{2}([x]}=\tan (x)$
119. $\int \frac{d x}{\min ^{2}(x)}=\frac{-\max ^{3}(x)}{2 \sin [x]}+\frac{1}{2} \ln \left|\frac{1-\cos |x|}{\sin (x)}\right|$
120. $\int \frac{\operatorname{dr}_{x}}{\cos ^{2}(x]}=\frac{\sin ^{2}(x]}{2 \cos (x)}+\frac{1}{2} \ln \left|\frac{1+\sin [\mid x)}{\cos [x]}\right|$
121. $\int \frac{\operatorname{dx}}{\min ^{2}(x] \cos (x)}=\ln \left|\frac{1+\sin (x)}{\cos (x)}\right|-\frac{1}{\sin [(x)}$
122. $\int \frac{d x}{\sin (x] \cos ^{2}(x)}=\ln \left|\frac{1-\operatorname{sos}[(x)}{\sin [(x]}\right|+\frac{1}{\sin [(x)}$
123. $\int \sin (x) \sin (x+a) d x=\frac{1}{2} x \cos (a)-$

$$
\frac{1}{4} \sin (2 x+a)
$$

124. $\int \sin (a x) \sin (b x) d x=\frac{\sin (f a-b \mid x)}{2(a-b)}-$

$$
\frac{\sin [(a+b]+]}{2[a+b]}
$$

125. $\int \cos (a x) \cos (b x) d x=\frac{\sin ([a-b[x]}{2(a-b]}+$

$$
\frac{\sin [\mid[a+b]=]}{2[a+b]}
$$

126. $\int \sin (a x) \cos (b x) d x=\frac{-\cos (|a-b| x \mid}{2[a-b]}-$
$\frac{\operatorname{mos}(f a+b) x \mid}{2(a+b]}$
127. $\int \frac{d x}{1 \tan [(x)}=\mp \tan \left(\frac{\pi}{4} \mp \frac{\pi}{2}\right)$
128. $\int \frac{4 x}{1+\infty \pi}|x|=\mp \tan \left(\frac{\pi}{4} \mp\left(\frac{2 x+\pi}{4}\right)\right)$
129. $\int \frac{x}{1 \times \sin (x)} d x=x \tan \left(\frac{\pi}{4} \mp \frac{x}{2}\right) \mp$ $2 \ln \left|\sin \left(\frac{\pi}{4} \pm \frac{\pi}{2}\right)\right|$
130. $\int \frac{x}{1 \tan (x)} d x=\left(x+\frac{\pi}{2}\right) \tan \left(\frac{\pi}{4} \mp\left(\frac{2 x+\pi}{4}\right)\right) \mp$ $2 \ln \left|\sin \left(\frac{\pi}{4} \pm\left(\frac{3+\pi}{4}\right)\right)\right|$
131. $\int \frac{d x}{1+\sin (x)}=$

$$
\begin{cases}\frac{2}{\sqrt{a^{2}-1}} \tan ^{-1}\left[\frac{\sqrt{a^{2}-1}}{\mid x-1} \tan \left(\frac{2 x+\pi}{4}\right)\right] & \text { if }|a|>1 \\ \frac{1}{\sqrt{1-a^{2}}} \ln \left|\frac{a \operatorname{con}\left[-/ 2 /+1-\sqrt{1-x^{2}}\right.}{\operatorname{ain}[x / 2]+1+\sqrt{1-x^{2}}}\right| & \text { if }|a|<1\end{cases}
$$

132. $\int \frac{d}{a+\operatorname{ses}|x|}=$

$$
\begin{cases}\frac{2}{\sqrt{a^{1}-1}} \tan ^{-1}\left[\frac{\sqrt{x}-1}{\sqrt{\sqrt{2}^{2}-1}} \tan \left(\frac{x}{2}\right)\right] & \text { if }|a|>1 \\ \frac{1}{\sqrt{1-a^{2}}} \ln \left|\frac{\left.\operatorname{san}(x / 2)+\frac{\sqrt{1-s^{2}}}{\sqrt{4 n}(x / 2)} \right\rvert\,}{\sqrt{1-a^{2}}}\right| & \text { if }|a|<1\end{cases}
$$

133. $\int \frac{4 x}{\operatorname{losin}[x]+\cos [x]}=\frac{1}{\sqrt{a^{2}+1}} \ln \left|\tan \left(\frac{x+\tan ^{-1} \frac{1}{2}}{2}\right)\right|$
134. $\int \frac{\cos (x)}{a \operatorname{an}(x)+\cos (x)} d x=\frac{x}{a^{2}+1}+\frac{a}{\sqrt[a]{\left.a^{2}+1\right]}} \ln \left|a+\frac{a^{2}+1}{2} \sin (2 x)\right|+\frac{a}{a^{2}+1} \ln \left|\frac{a \tan (x)+1}{\operatorname{atan}(x)+a^{2}}\right|$
135. $\int \tan ^{2}(x) d x=\tan (x)-x$
136. $\int \tan ^{3}(x) d x=\frac{1}{2} \tan ^{2}(x)+\ln |\cos (x)|$
137. $\int \cot ^{2}(x) d x=-\cot (x)-x$
138. $\int \cot ^{1}(x) d x=-\frac{1}{2} \cot ^{2}(x)-\ln |\sin (x)|$
139. $\int \sin ^{-1}(x) d x=x \sin ^{-1}(x)+\sqrt{1-x^{2}}$
140. $\int\left(\sin ^{-1}(x)\right)^{2} d x=x\left(\sin ^{-1}(x)\right)^{2}-$

$$
2 x+2 \sin ^{-1}(x) \sqrt{1-x^{2}}
$$

141. $\int \sin ^{-1}\left(\frac{1}{x}\right) d x=x \sin ^{-1}\left(\frac{1}{x}\right)+$

$$
\ln \left(x+\sqrt{x^{2}-1}\right)
$$

142. $\int \cos ^{-1}(x) d x=7 \cos ^{-1}(x)-\sqrt{1-x^{2}}$
143. $\int\left(\cos ^{-1}(x)\right)^{2} d x=x\left(\cos ^{-1}(x)\right)^{2}-$

$$
2 x-2 \mathrm{cos}^{-1}(x) \sqrt{1-x^{2}}
$$

144. $\int \cos ^{-1}\left(\frac{1}{x}\right) d x=x \cos ^{-1}\left(\frac{1}{x}\right)-$

$$
\ln \left(x+\sqrt{x^{2}-1}\right)
$$

145. $\int\left(\sin ^{-1}(x)\right)\left(\cos ^{-1}(x)\right) d x=$

$$
x \sin ^{-1}(x) \cos ^{-1}(x)+2 x+
$$

$$
\sqrt{1-x^{2}}\left(\cos ^{-1}(x)-\sin ^{-1}(x)\right)
$$

146. $\int \sin \left(a \sin ^{-1}(x)\right) d x=$

$$
\frac{a \sqrt{1-x^{2}} \cos ^{2}\left[a \sin ^{-1}[x] \mid+x \sin \left(a \sin ^{-1}|x|\right]\right.}{1-a^{2}}
$$

147. $\int \cos \left(a \cos ^{-1}(x)\right) d x=$

148. $\int \tan ^{-1}(x) d x=x \tan ^{-1}(x)-$

$$
\frac{1}{2} \ln \left(x^{2}+1\right)
$$

149. $\int \tan \left(a+\tan ^{-1}(x)\right) d x=$

$$
x \cot (a)-\frac{1}{\sin ^{2}[a]} \ln (x \sin (a)-\cos (a))
$$

150. $\int x \sin ^{-1}(x) d x=\frac{\sqrt{2 x}-1]]^{-1} x+x \sqrt{1-x^{2}}}{4}$
151. $\int x \cos ^{-1}(x) d x=\frac{\sqrt{\left.7 x^{2}-1\right]} \cdot \operatorname{men}^{-1} x-x \sqrt{T-x^{2}}}{4}$
152. $\left.\int x \tan ^{-1}(x) d x=\frac{\left(x^{3}+1\right) \operatorname{lna}}{2} \right\rvert\,(x)-x$
153. $\int \tan ^{-1}\left(\frac{a x+b}{x+\varepsilon}\right) d x=\left(x+\frac{b+c}{a^{2}+1}\right) \tan ^{-1}\left(\frac{a x+b}{x+c}\right)+\frac{b-a x}{a^{2}+2} \ln \left((a x+b)^{2}+(x+c)^{2}\right)$

Hyperbolie Functions

154. $\sinh (x)=\frac{x^{*}-e^{-x}}{2}$
155. $\cosh (x)=\frac{c^{\circ}+\varepsilon^{-}}{2}$
156. $\tanh (x)=\frac{e^{m-\varepsilon^{-x}}}{\varepsilon^{n+}+\varepsilon^{-x}}$
157. $\cosh ^{2}(x)-\sinh ^{2}(x)=1$
158. $\sinh ^{-1}=\ln \left(x+\sqrt{x^{2}+1}\right)$
159. $\cosh ^{-1}=\ln \left(x+\sqrt{x^{2}-1}\right)$
160. $\tanh ^{-1}=\ln \left(\frac{1+\frac{2}{1}}{1-\frac{1}{2}}\right)$
161. $\int \sinh (x) d x=\cosh (x)$
162. $\int \cosh (x) d x=\sinh (x)$
163. $\int \tanh (x) d x=\ln \left(e^{x}+e^{-x}\right)$
164. $\int \frac{d x}{\operatorname{minh}(x)}=\ln \left|\frac{c^{2}-1}{\varepsilon^{*}+1}\right|$
165. $\int \frac{d x}{\cosh [x]}=2 \tan ^{-1}\left(e^{x}\right)$
166. $\int \frac{d x}{\sinh ^{[}(x)}=-\operatorname{coth}(x)=\frac{-1}{\sinh (x)}$
167. $\int \frac{d x}{\operatorname{man}^{2}(x)}=\tanh (x)$
168. $\int \tanh ^{2}(x) d x=x-\tanh (x)$
169. $\int x \sinh (x) d x=x \operatorname{coch}(x)-\sinh (x)$
170. $\int x \cosh (x) d x=x \sinh (x)-\cosh (x)$
171. $\int \sinh ^{-1}(x) d x=x \sinh ^{-1}(x)-$

$$
\sqrt{x^{2}+1}
$$

172. $\int \cosh ^{-1}(x) d x=x \cosh ^{-1}(x)-$

$$
\sqrt{x^{2}-1}
$$

173. $\int \tanh ^{-1}(x) d x=\frac{1}{2} \ln \left(1-x^{2}\right)+$ $x \tanh ^{-1}(x)$
174. $\int x \sinh ^{-1}(x) d x=$

$$
\frac{\frac{2 x^{2}+1}{4}}{4} \sinh ^{-1}(x)-\frac{1}{4} \sqrt{x^{2}+1}
$$

175. $\int x \operatorname{covh}^{-1}(x) d x=$

$$
\frac{\frac{2 x^{x}+1}{4}}{4} \cosh ^{-1}(x)-\frac{1}{4} \sqrt{x^{2}-1}
$$

176. $\int x \tanh ^{-1}(x) d x=\frac{1}{2}\left(x^{2}-1\right) \tanh ^{-1}(x)+\frac{x}{2}$
177. $\int\left(\sinh ^{-1}(x)\right)^{2} d x=2 x+x\left(\sinh ^{-1}(x)\right)^{2}-2 \sinh ^{-1}(x) \sqrt{x^{2}+1}$
178. $\int\left(\cosh ^{-1}(x)\right)^{2} d x=2 x+x\left(\cosh ^{-1}(x)\right)^{2}-2 \cosh ^{-1}(x) \sqrt{x^{2}-1}$
179. $\int \sinh ^{-1}\left(\frac{1}{2}\right) d x=x \sinh ^{-1}\left(\frac{1}{x}\right)+\sinh ^{-1}(x)$
180. $\int \cosh ^{-1}\left(\frac{1}{x}\right) d x=x \cosh ^{-1}\left(\frac{1}{x}\right)+\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$
