Calculus 141, section 8.7b Improper Integrals

notes by Tim Pilachowski

Improper integrals that have a numeric value are said to be *convergent*. The rest are said to be *divergent*. basic method: $\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$, with associated versions for integrals involving $-\infty$ and denominators approaching 0.

Example A: Does $\int_{e}^{\infty} \frac{dx}{x(\ln x)^2}$ converge? Answer: converges to 1

Example B: Find the volume of $y = \frac{1}{x}$ rotated around x-axis from 1 to ∞ . Answer: converges to π

A paradox: The area under the curve, in two dimensions, is infinite, but the volume of the three-dimensional figure is bound by an upper limit of π ! However, the surface area of the same figure is also infinite.

Example C: Does $\int_{1}^{2} \frac{2}{x^2 - 2x} dx$ converge? Answer: diverges

Example D: Does $\int_0^\infty x \, 3^{-x} \, dx$ converge? Answer: converges to $\left(\frac{1}{\ln 3}\right)^2$