
Calculus 141, section 9.2 Sequences 
notes by Tim Pilachowski 
 
A sequence is a list of numbers, given in a particular order, found according to a particular formula—in other 
words, a function. The domain of a sequence consists of non-negative integers, with the particular terms of a 
sequence designated as ,310 ,, aaa  etc., and the general term of a sequence most often designated as na . Each 
subscript is called an index. 
 

Example A: The sequence defined by 
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A couple of sequences are useful enough to have their own names. Practice problems 51 and 53 from the text 
have you investigate compound interest, done as both compounding n times per year and as continuous 

compounding. The sequence 
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 is called the harmonic sequence. The sequence { }nr is a geometric 

sequence, which the text shows converges to 0 for 1<r , converges to 1 for r = 1, and diverges for all other 
values of r (Example 7). 
 
 

But what does it mean to say that a sequence converges, i.e. whether or not a particular sequence has a limit 

equal to a particular numeric value? If we plot the terms of 
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seems to converge to a value of 1, but as always, “seems to” is insufficient for mathematical purposes. 
 

Definitions: A number L is the limit of a sequence if for every 0>ε there is an integer N such that  if 
ε<−≥ LaNn n  then  , , and we’ll say that the sequence converges to L. If, on the other hand, for every 

number M there is an integer N such that  if MaNn n >≥   then  , , we’ll say that the sequence diverges to ∞ . If 

Ma n <  we’ll say that the sequence diverges to ∞− . 
 

Example A continued: Show that 1
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Note that we have proven that the sequences 
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The behavior of the sequence at its beginning is not the determining criterion. Rather it is the behavior as n 
approaches infinity which concerns us. 
 



Example B: Determine whether the sequence { }
0
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n
n  converges or diverges. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fortunately, we don’t have to rely on the definitions above to show convergence and divergence. Recall that a 
sequence is a function, defined on a domain consisting of non-negative integers. It is not difficult to show that if 
the related function f(x), defined over a domain consisting of all positive numbers, has a limit, then the 
sequence, defined over a more limited part of that domain, also has a limit (Theorem 9.4). 
 

Example C: Find 
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Example D: Does the sequence { }
0
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n
n  converge? 

 
 
 
 
 

Example A one more time: If we let ( ) 1for    
1

≥
+

= x
x

xxf , then since 1
1
1lim

1
lim ==

+ ∞→∞→ xx x
x  (L’Hôpital’s 

Rule) we can say that the sequence 
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Example E: Does the sequence 
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Example F: Does the sequence 
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