
Calculus 141, section 9.4 Infinite Series 
notes by Tim Pilachowski 

A sequence { }
mn

an
=

∞
 consists of an ordered set of numbers. If we were to begin adding the numbers of a 

sequence together, 11 −++ +++= jmmmj aaas … , we would have a partial sum, designated as 
−+

=

1jm

mn

n
a . The sum 

js  above of the first j terms is called the jth partial sum. If we take the sum to infinity, 
∞

= mn

n
a , then we have an 

series, that is, an infinite sum. But what does it mean to add an infinite sequence of numbers, and can such an 

infinite series add up to a finite number? In other words, does an infinite series have a limit, does it converge? 

Definition: Given  a sequence { }
mn

an
=

∞
 and a series 

∞

= mn

n
a , if ( )11lim −++

∞→

+++ jmmm
j

aaa …  exists, then 

( )11lim
−++

∞→

∞

=

+++= jmmm
jmn

n
aaaa …  and the series converges. If the limit goes to ∞ or does not exist, then the 

series diverges. 
 

How can we determine whether or not a series converges? One way to approach this is to remember that we 

have two sequences involved in every series. The first is the sequence of terms { }
mn

an
=

∞
. The second is the 

sequence of partial sums: …,,, 21211 +++++
++=+==

mmmmmmmmm
aaasaasas  .  If we can show that the 

sequence of partial sums { }
js  converges, we will be able to conclude that the series converges. 

Example A: Does the series …++++=
∞

= 8
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2

1
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0n
n

  converge, and if so, to what limit? 

Intuitive Answer: converges to what value? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Be careful that you are clear in your own mind about the differences among the sequence, the sequence of 

partial sums, and the series. 
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Example A extended: Find 
∞

=1 2

1

n
n

 and 
∞

= 2 2

1

n
n

.   Answers: converges to 1; converges to 
2

1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example A extended again: Find 
∞

=
+

0
12

1

m
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 and 
∞

=
+

0
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m
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.   Answers: converges to 1; to 
2
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Example B: Determine whether or not the series 
∞

= ++1
2 127

1

n nn
 converges and if so, find its limit. 



Answer: converges to 
4

1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Example C: Determine whether ( )
∞

=

−
1

1
n

n
 converges, and if so, find its limit.   Answer: diverges 

 

 

 

 

 

 

 
 

The text proves a couple of theorems that formalize the relationship between a series and its related sequence. 

Theorem 9.8 states:  If 
∞

= mn

n
a  converges, then 0lim =

∞→
n

n

a . The contrapositive, which is logically equivalent is 

stated as Corollary 9.9: If 0lim ≠
∞→

n
n

a  or does not exist, then 
∞

= mn

n
a  diverges. 



 

Note that in Examples A and B above (convergent series), 0
2

1
lim =

∞→ nn
 and 0

127

1
lim

2
=

++∞→ nnn
, while in 

Example C (divergent series), ( ) n

n
1lim −

∞→
 does not exist. Also, from Lecture 9.3 Example A in, we now know 

that 
∞

=

−+
1

2 3
n

nnn  diverges since 0
2

3
3lim 2

≠=−+
∞→

nnn
n

. 

 

 

Important cautionary note (again): Be sure that you are clear in your own mind that there is a difference 

between the sequence of terms for { }
mn

an
=

∞
 and the sequence of partial sums { }

js  produced by the series 


∞

= mn
n

a . 

The converse of Theorem 9.8 is not true: 0lim =
∞→

n
n

a  is not a guarantee that 
∞

=1n

n
a  will converge.  

Although the harmonic sequence 
1
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=
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nn
 converges to 0, the harmonic series 

∞

=1

1

n n
 diverges (see text 

Example 4). Thus (Lecture 9.3 Example B) since the sequence 
1

!

=
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nn

n
n

 converges to 0, although we can say 

that the series 
∞

=1

!

n
nn

n
 might converge, we cannot be certain that it does converge. 

 

The text also proves some very convenient theorems which ease the task of evaluating series. Theorem 9.10 

states: For c ≠ 0 and m ≥ 0, the geometric series 
∞

= mn

nrc  converges if and only if 1<r , and if it converges we 

can calculate the sum of the series: 
r

rc
rc

m

mn

n

−
=

∞

= 1
. 

The proof relies on calculating the sequence of partial sums and identifying the pattern which emerges. 
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Theorem 9.11 and associated theorems give us means of combining series in much the same way that we can 

add (and subtract) and multiply (and divide) limits: 

a. If 
∞

= mn

na  and 
∞

= mn

nb  both converge, then ( )
∞

=

+
mn

nn ba  converges and ( ) 
∞

=

∞
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+=+
mn

n

mn

n
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nn baba . 

b. For any number c, if 
∞

= mn

na  converges, then 
∞

= mn

nac  also converges and 
∞

=

∞

=

∗=
mn

n

mn

n acac . 



 

Example D: Evaluate 
∞

=
+

+

0
13

24

n
n

n

.   Answer: converges to 3 

Method: Use factoring and separation of fractions to rearrange the series into the form of a geometric series and 

use the formula from Theorem 9.10 to evaluate: 
r
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m
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−
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∞

= 1
 with | r | < 1. 
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factor: 

 
separate the fractions 

(distribute the division): 

 
rewrite as c r 

n: 

 
apply Theorem 9.10: 

 
simplify: 


