
Calculus 141, section 9.5 Integral Test and Comparison Tests 
notes by Tim Pilachowski 
 

Consider series such as ∑
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integrals ∫
∞

1 x

dx
, ∫

∞

1 x

dx
, ∫

∞

1 2x

dx
, and ∫

∞

1 2x

dx
. Indeed, both ∑

∞

=1

1

n
n

 (harmonic series, section 9.4) and 

∫
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1 x
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 (section 8.7) diverge. Might we suspect a similar relationship between the other infinite series and 

corresponding improper integrals? 
 

By observing the relationships between the terms an of a positive decreasing sequence, and the values of the 

function f for which f(n) = an, the text proves Theorem 9.12, the Integral Test: For a positive decreasing 

sequence { }
1=

∞

n
an , and f a continuous function on [1, ∞) such that f(n) = an, then the series ∑
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na  converges 

if and only if ( )∫
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1
dxxf  converges. 

 

Examples A: Determine whether ∑
∞

=1

1

n n
, ∑
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, and ∫

∞

1 2x

dx
 converge or diverge. 

Answers: diverges, converges, converges 

 

 

 

 

 

 

 

 

 

 
 

Example B: Determine values of p for which ∑
∞

=1
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n
p

n
 converges and diverges.  Answers: p > 1; 0 < p ≤ 1 

 

 

 

 

 

 

 

 

 

 

 
 



Example C: Does ∑
∞

=1

1

n nn
 converge?   Answer: yes 

 

 

 

 

 

 

 

 
 

Example D: Does the infinite series ∑
∞

= 2 ln

1
n nn

 converge?   Answer: no 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Example A revisited: Determine the value to which ∑
∞

=1
2
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n n
 converges.   Answer: 

6

2π  (trick question) 

 

 

 

 

 

 

 

 

 

 

 

The question now becomes: How quickly and how closely do the partial sums generated by a series approach 

the actual value of the series? The jth truncation error is defined to be  

∑∑∑
∞∞

+===

=−=

111 jnnn
n

j

nnj aaaE , i.e. the rest of the sequence beyond the jth partial sum. The text applies the 

Integral Test to show that ( ) ( )∫∫
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+
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jjj
dxxfEdxxf

1
. In Example 2 the text estimates 100E  for ∑

∞

=1
2

1

n n
. 

 



Example C revisited: Estimate 10000E  for the series ∑
∞

=1

1

n nn
.   Answer: within 0.02 

 

 

 

 

 

 

 

 

 

 

 

 
 

Recall section 8.7, where we developed the comparison test for improper integrals. A similar test exists for 

infinite sums: Theorem 9.13 gives us the Direct Comparison Test for infinite sums.  

a. If ∑
∞
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nb  converges and 1  allfor   0 ≥≤< nba nn , then ∑
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b. If ∑
∞
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nb  diverges and 1  allfor   0 ≥≤< nab nn , then ∑
∞

=1n

na  diverges. 

 

Example E: Does ∑
∞
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!
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 converge?   Answer: yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Direct comparison is sometimes awkward, or at least inconvenient. The Limit Comparison Test provides an 

alternative (Theorem 9.14): If  
n

n

n b

a

∞→
lim  exists and is a positive number, then positive series ∑
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=1n

na  and 

∑
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nb  either both converge or both diverge. To apply the Limit Comparison Test, we’ll look for a sequence 

{ }nb  which has known properties and whose nth term behaves in a fashion similar to the nth term of the 

sequence { }na  for large values of n. If we can determine that 
n
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n b
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∞→
lim  is a positive number, we’ll be able to 

draw a conclusion about the series ∑
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=1n

na . 

 

Example F: Does ∑
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= −1 52
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 converge?   Answer: yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Example G: Does 
( )

∑
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= −
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n
 converge?   Answer: no 


