Calculus 141, section 9.5 Integral Test and Comparison Tests

 notes by Tim PilachowskiConsider series such as $\sum_{n=1}^{\infty} \frac{1}{n}, \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}, \sum_{n=1}^{\infty} \frac{1}{n^{2}}$, and $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$. You may notice that these resemble improper integrals $\int_{1}^{\infty} \frac{d x}{x}, \int_{1}^{\infty} \frac{d x}{\sqrt{x}}, \int_{1}^{\infty} \frac{d x}{x^{2}}$, and $\int_{1}^{\infty} \frac{d x}{2^{x}}$. Indeed, both $\sum_{n=1}^{\infty} \frac{1}{n}$ (harmonic series, section 9.4) and $\int_{1}^{\infty} \frac{d x}{x}$ (section 8.7) diverge. Might we suspect a similar relationship between the other infinite series and corresponding improper integrals?
By observing the relationships between the terms a_{n} of a positive decreasing sequence, and the values of the function f for which $f(n)=a_{n}$, the text proves Theorem 9.12, the Integral Test: For a positive decreasing sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$, and f a continuous function on $[1, \infty)$ such that $f(n)=a_{n}$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\int_{1}^{\infty} f(x) d x$ converges.

Examples A: Determine whether $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}, \sum_{n=1}^{\infty} \frac{1}{n^{2}}$, and $\int_{1}^{\infty} \frac{d x}{2^{x}}$ converge or diverge.
Answers: diverges, converges, converges

Example B: Determine values of p for which $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges and diverges. Answers: $p>1 ; 0<p \leq 1$

Example C: Does $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$ converge? Answer: yes

Example D: Does the infinite series $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$ converge? Answer: no

Example A revisited: Determine the value to which $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. Answer: $\frac{\pi^{2}}{6}$ (trick question)

The question now becomes: How quickly and how closely do the partial sums generated by a series approach the actual value of the series? The j th truncation error is defined to be
$E_{j}=\left|\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{j} a_{n}\right|=\left|\sum_{n=j+1}^{\infty} a_{n}\right|$, i.e. the rest of the sequence beyond the j th partial sum. The text applies the Integral Test to show that $\int_{j+1}^{\infty} f(x) d x \leq E_{j} \leq \int_{j}^{\infty} f(x) d x$. In Example 2 the text estimates E_{100} for $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

Example C revisited: Estimate E_{10000} for the series $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$. Answer: within 0.02

Recall section 8.7, where we developed the comparison test for improper integrals. A similar test exists for infinite sums: Theorem 9.13 gives us the Direct Comparison Test for infinite sums.
a. If $\sum_{n=1}^{\infty} b_{n}$ converges and $0<a_{n} \leq b_{n}$ for all $n \geq 1$, then $\sum_{n=1}^{\infty} a_{n}$ converges and $\sum_{n=1}^{\infty} a_{n} \leq \sum_{n=1}^{\infty} b_{n}$.
b. If $\sum_{n=1}^{\infty} b_{n}$ diverges and $0<b_{n} \leq a_{n}$ for all $n \geq 1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Example E: Does $\sum_{n=1}^{\infty} \frac{1}{n!}$ converge? Answer: yes

Direct comparison is sometimes awkward, or at least inconvenient. The Limit Comparison Test provides an alternative (Theorem 9.14): If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and is a positive number, then positive series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ either both converge or both diverge. To apply the Limit Comparison Test, we'll look for a sequence $\left\{b_{n}\right\}$ which has known properties and whose nth term behaves in a fashion similar to the nth term of the sequence $\left\{a_{n}\right\}$ for large values of n. If we can determine that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ is a positive number, we'll be able to draw a conclusion about the series $\sum_{n=1}^{\infty} a_{n}$.

Example F: Does $\sum_{n=1}^{\infty} \frac{1}{2^{n}-5}$ converge? Answer: yes

Example G: Does $\sum_{n=1}^{\infty} \frac{3 n+2}{\sqrt{n}(3 n-5)}$ converge? Answer: no

