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 converges whenever p > 1 and diverges whenever 0 < p ≤ 1. 

● The Integral Test states a series  converges if and only if ∑
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● In the Direct Comparison Test,  converges if its terms are less than those of a known convergent 

series, and diverges if its terms are greater than those of a known convergent series. 
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● The Limit Comparison Test states: If  
n

n
n b

a
∞→

lim  exists and is a positive number, then positive series  

and  either both converge or both diverge. 
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A downside to the Comparison Tests is that they require a suitable series to use for the comparison. 
In contrast, the Ratio Test and the Root Test require only the series itself. 
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 does not exist, no conclusion. 

The proof of part a. relies upon the definition of limits and the “creation” of a geometric series which converges 
to which we compare our original series. Briefly, by the nature of inequalities there exists a value s for which    

0 ≤ r < s < 1. From the definition of limits, there exists a value N such that for n ≥ N, saas
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Then . The latter value is the basis for a geometric 
series which converges. The application of the Comparison Test finishes the proof of part a. The proof of part b. 
is analogous, with r > s > 1. 
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Hint: The Ratio Test works best for series such as ∑∑∑
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 for which n is a factorial or 

an exponent. 
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 converge?   Answer: yes 

 
 
 
 
 
 
 



Example B: Does ∑
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 converge?   Answer: no 

 
 
 
 
 
 
 
 
 
 
 

Example B upside down: Does the “reciprocal” series ∑
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n  converge?   Answer: yes 

In Lecture 9.4 it was noted that since 
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converge, we could not be certain that it does converge. 
 
 
 
 
 
 
 
 
 
 
 
 
The nature of the Ratio Test is such that if it shows a series converges, then the series involving the reciprocals 
of the terms must diverge, and vice-versa. 
 

Example C: Use the Ratio Test to test convergence of ∑
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Root Test (Theorem 9.16) Given a positive series  for which ∑
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The proof is a little simpler than that for the Ratio Test: For values s and N as described above, 
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n sasa ≤⇒≤ , the basis for a geometric series which converges. The Comparison Test finishes the 
proof of part a. The proof of part b. is analogous, with r > s > 1. The Root Test is especially useful in series that 
involve a kth power and which have no complications such as factorials. 
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 converge?   Answer: yes 
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