
Calculus 141, section 9.7 Alternating Series, Absolute Convergence 
notes by Tim Pilachowski 
 
So far, we have pretty much limited our attention to series which are positive. What can we say of those which 

are not positive? We have taken a quick look at one alternating series: ( )∑
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notes 9.4) because the sequence of partial sums does not converge to a single value, but rather alternates 
between 1−  and 0. The first question becomes: Can we determine whether an alternating series is convergent or 
divergent? Theorem 9.17, credited to Leibniz, provides a straightforward test. To show that the alternating 
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Because the terms alternate in sign, the partial sums successively rise and 

fall. Because the sequence { }
1=

∞
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an  is positive and decreasing, the 

sequence of partial sums will alternately “overshoot” and “undershoot” the 
limiting value, in a manner similar to the function pictured to the right. 
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Example E: Does the alternating series ( ) K
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Theorem 9.17 provides a means of estimating the error involved in using a partial sum to approximate a series: 
the jth truncation error satisfies 1+< jj aE . The proof relies on the alternating nature of the series. Since the 
sequence of terms is decreasing, and the partial sums alternately overshoot and undershoot the limit, the error 
continually decreases by no more than the amount of the succeeding term. 
 

Example A extended: If we use the alternating harmonic series ( )∑
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sum would we need to use to be within 410− ?   Answer: 10,000th partial sum 
 
 
 
 
 
 

Example B extended: Which partial sum would we need to approximate ( )∑
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Answer: 100th partial sum 
 
 
 
 



For a convergent series ∑
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Otherwise, it converges conditionally. 
 

Example A again: Does ( )∑
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Example B again: Does ( )∑
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We can generalize about an alternating p-series ( )
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absolutely for all values of p > 1 and diverge for 10 ≤< p . 
 
Absolute convergence of a series carries with it a benefit useful in evaluating a series which is neither positive 

nor alternating. By Theorem 9.18, if ∑
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Theorem 9.20 provides generalized versions of the Direct Comparison Test, Limit Comparison Test, Ratio Test 

and Root Test. Corollary 9.21 states that if either 1lim 1 <=+
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N.B. The text provides a summary of convergence tests for series at the end of chapter 9, just before the 
review pages. I have also put a link on the Math 141 webpage to a similar summary which also includes 
strategies for choosing which test to use in particular circumstances. 
 



Example G: Find values for x for which ∑
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nxn  converges.   Answer: 1<x  


