
Calculus 141, section 9.8b Playing with Power Series 
notes by Tim Pilachowski 
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Evaluated at x = 0 we get ( ) 00 cf = , ( ) 10 cf =′ , ( )( ) 2
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This should look familiar to you as the Taylor expansion about x = 0, but with an important difference. In 

section 9.1 we knew that the Taylor polynomial as valid close to 0, but we had no way to be sure how close we 

had to be. Now we know that the Taylor polynomial expansion about x = 0 is valid as long as we are within the 

interval of convergence (Theorem 9.26). 
 

This conclusion leads to Corollary 9.27: If ( ) ∑∑
∞

=

∞

=

==
00 nn

n
n

n
n xbxcxf , then nn bc =  for Rx < . This is 

sometimes referred to as a uniqueness theorem, and holds true within the interval of convergence. It, along with 

the derivative and integral theorems, allows us to derive power series expansions for all kinds of functions. A 

very useful power series to know is ∑
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K  (Example A from lecture notes 9.8a) with R = 1. The 

purpose is to illustrate methods that you can use in working with functions expressed as power series. 
 

Example A: Find the power series expansion for ( )
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Example A extended: Find the power series expansion for ( )
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Example B: Find the power series expansion for f(x) = ln (1 – x).    Answer: ( )∑
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Example C: Find the power series expansion for f(x) = ln (1 – x) + x .    Answer: ∑
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Example D: Find the power series expansion for ( )
( )

2

1ln

x

xx
xf

+−
= .    Answer: ∑

∞

=

−









+

−

1

1

1

1

n

n
x

n
 

 

 

 

 

 

 

 

Example E, part 1: Given ( )
( )

2

1ln

x

xx
xf

+−
= , find a sensible value to define as f (0).   Answer: 

2

1−  

 

 

 

 

 

 
 



Example E, part 2: Given ( )
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Granted, there may be easier methods for the examples above, but hopefully you have an idea of some things 

you can do with series. The methods illustrated above have historically been used to find ways to express and 

evaluate functions and quantities that were otherwise inaccessible. Here’s a famous one also developed in the 

text. 
 

Example G: Approximate 
4

π
 by evaluating ( )1tan 1−  using a power series expansion. The resulting series can be 

used to approximate π. 
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Substitute –x for x: ( ) ( ) ( ) ( )∑∑
∞

=

∞

=

−=−=
+

=−=
00

1
1

1

nn

nnn
xx

x
xfxg  

Substitute 2
x  for x: ( ) ( ) ( ) ( ) ( )∑∑

∞

=

∞

=

−=−=
+

==
00

2

2

2 2
11

1

1

nn

nnnn
xx

x
xgxh  

Integrate the series: ( )
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Evaluate at x = 1: ( )
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Since this is an alternating series, the truncation error satisfies 1+< jaE j . So to determine a value of n which 

would guarantee an error less than 410− , we would solve 
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In other words, the series does not converge very quickly. Fortunately, other formulae have been derived over 

the centuries. 


