Calculus 141, section 9.9 Taylor Series Completed

notes by Tim Pilachowski
Introduced in 9.1, and refined a little in 9.8, we have $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$ for $|x|<R$, the Taylor polynomial for f on an open interval I containing 0 . Two limitations to its usefulness exist, however. First of all, the domain of a function may be larger than the interval I over which the power series is defined, e.g.
$f(x)=\frac{1}{1+x^{2}}$, for which $R=1$, but which is defined and differentiable for all real numbers. Also, the requirement that f have derivatives of all orders on I means that not all functions have a Taylor series representation, e.g. $f(x)=|x|$ which is continuous everywhere but not differentiable at $x=0$.

We now finish our investigation of Taylor polynomials by determining more general requirements under which the Taylor series for a function converges to that function for any x. For example, while we have derived Taylor series for $\sin x$ and $\cos x$, we have not shown yet that they are valid for all values of x.
Example A: A classically used example, also discussed in the text, is the function $f(x)=\left\{\begin{array}{l}0, x=0 \\ e^{-1 / x^{2}}, x \neq 0\end{array}\right.$. While the Taylor series representation about $x=0$ of this function converges for all values of x, it converges to $f(x)$ only for $x=0$.
Theorem 9.30, Taylor's Formula expanded about $x=0$ (also called the Maclaurin Series), states: For $n>0$ and if $f^{(n+1)}(x)$ exists for each x in an open interval I containing 0 , then for each $x \neq 0$ in I, there is a number $0<t_{X}<x$ such that $f(x)=\sum_{m=0}^{n}\left(\frac{f^{(m)}(0)}{m!} x^{m}\right)+\frac{f^{(n+1)}\left(t_{x}\right)}{(n+1)!} x^{n+1}$. The remainder $r_{n}(x)=\frac{f^{(n+1)}\left(t_{x}\right)}{(n+1)!} x^{n+1}$ is the Lagrange Remainder Formula. With an application of the Mean Value Theorem [since for $n=0$, $\left.f(x)-f(0)=f^{\prime}\left(t_{x}\right) *(x-0)\right]$, it is simple to show that for any $x f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$ if and only if $\lim _{n \rightarrow \infty} r_{n}=0$.

Example B. Derive the Taylor expansion for $f(x)=\sin x$ and show that it converges to $\sin x$.
Answer: $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

Example C: Show that the Taylor polynomial generated by $f(x)=e^{X}$ at $x=0$ converges to e^{x} for all x.

Example C extended: Calculate e with an error less than 10^{-6}. Answer: 2.718282

Sometimes we might want to find a Taylor series centered at a value for x other than 0 , i.e. $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$. For this case, we have Theorem 9.31, Taylor's Theorem: For $n>0$ and if $f^{(n+1)}(x)$ exists for each x in an open interval I containing a, for each $x \neq a$ there is a number $a<t_{X}<x$ such that
$f(x)=\sum_{m=0}^{n} \frac{f^{(m)}(a)}{m!}(x-a)^{m}+\frac{f^{(n+1)}\left(t_{X}\right)}{(n+1)!}(x-a)^{n+1}$. The remainder $r_{n}(x)=\frac{f^{(n+1)}\left(t_{X}\right)}{(n+1)!}(x-a)^{n+1}$ is the Lagrange Remainder Formula.
Example D: Find the Taylor series of $\ln x$ about $x=1$, and determine its radius of convergence.
Answers: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(x-1)^{n} ;(0,2]$

