Calculus 141, section 9.9 Taylor Series Completed

notes by Tim Pilachowski

Introduced in 9.1, and refined a little in 9.8, we have $f(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ for |x| < R, the Taylor

polynomial for f on an open interval I containing 0. Two limitations to its usefulness exist, however. First of all, the domain of a function may be larger than the interval I over which the power series is defined, e.g.

 $f(x) = \frac{1}{1+x^2}$, for which R = 1, but which is defined and differentiable for all real numbers. Also, the

requirement that *f* have derivatives of all orders on *I* means that not all functions have a Taylor series representation, e.g. f(x) = |x| which is continuous everywhere but not differentiable at x = 0.

We now finish our investigation of Taylor polynomials by determining more general requirements under which the Taylor series for a function converges to that function for any x. For example, while we have derived Taylor series for sin x and cos x, we have not shown yet that they are valid for all values of x.

Example A: A classically used example, also discussed in the text, is the function $f(x) = \begin{cases} 0, & x = 0 \\ e^{-\frac{1}{x^2}}, & x \neq 0 \end{cases}$.

While the Taylor series representation about x = 0 of this function converges for all values of x, it converges to f(x) only for x = 0.

Theorem 9.30, Taylor's Formula expanded about x = 0 (also called the Maclaurin Series), states: For n > 0 and if $f^{(n+1)}(x)$ exists for each x in an open interval *I* containing 0, then for each $x \neq 0$ in *I*, there is a number

$$0 < t_x < x \text{ such that } f(x) = \sum_{m=0}^n \left(\frac{f^{(m)}(0)}{m!} x^m \right) + \frac{f^{(n+1)}(t_x)}{(n+1)!} x^{n+1}.$$
 The remainder $r_n(x) = \frac{f^{(n+1)}(t_x)}{(n+1)!} x^{n+1}$ is

the Lagrange Remainder Formula. With an application of the Mean Value Theorem [since for n = 0,

$$f(x) - f(0) = f'(t_x) * (x - 0)$$
], it is simple to show that for any $x f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ if and only if

$$\lim_{n\to\infty}r_n=0.$$

Example B. Derive the Taylor expansion for $f(x) = \sin x$ and show that it converges to $\sin x$.

Answer:
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

Example C: Show that the Taylor polynomial generated by $f(x) = e^x$ at x = 0 converges to e^x for all x.

Example C extended: Calculate *e* with an error less than 10^{-6} . Answer: 2.718282

Sometimes we might want to find a Taylor series centered at a value for x other than 0, i.e. $\sum_{n=0}^{\infty} c_n (x-a)^n$. For

this case, we have Theorem 9.31, Taylor's Theorem: For n > 0 and if $f^{(n+1)}(x)$ exists for each x in an open interval *I* containing *a*, for each $x \neq a$ there is a number $a < t_x < x$ such that

$$f(x) = \sum_{m=0}^{n} \frac{f^{(m)}(a)}{m!} (x-a)^m + \frac{f^{(n+1)}(t_x)}{(n+1)!} (x-a)^{n+1}.$$
 The remainder $r_n(x) = \frac{f^{(n+1)}(t_x)}{(n+1)!} (x-a)^{n+1}$ is the

Lagrange Remainder Formula.

Example D: Find the Taylor series of $\ln x$ about x = 1, and determine its radius of convergence.

Answers:
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n; (0,2]$$