downloaded from http://www.math.umn.edu/~kontovou/convergence2.pdf

Convergence of series - Tests and strategies

- Integral test -- For a series $\sum a_n$ with a_n positive and decreasing, construct the function f(x) where $f(n) = a_n$.
 - If $\int_{1}^{\infty} f(x)dx < \infty$ then the series converges. If $\int_{1}^{\infty} f(x)dx = \infty$ or does not exist, then the series diverges.
- Comparison test -- This test applies to series with *positive* terms.
 - a) If there is a convergent series $\sum b_n$ and $a_n \le b_n$ for all n, then $\sum a_n$ converges.
 - b) If there is a divergent series $\sum b_n$ and $a_n \ge b_n$ for all n, then $\sum a_n$ diverges.
- Limit comparison test -- Consider the series $\sum a_n$ and $\sum b_n$, both with *positive* terms. If $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists, is finite and non-zero, then either both series converge, or they both diverge.
- Alternating series test -- This test applies to series of the form $\sum_{n=1}^{\infty} (-1)^n b_n$. If $b_{n+1} \le b_n$ for all n, and $\lim_{n \to \infty} b_n = 0$, then the series converges. Note that if the second part of the condition fails $(\lim_{n \to \infty} b_n \ne 0)$ then the series diverges.
- Absolute convergence -- If $\sum |a_n|$ converges, then the series $\sum a_n$ also converges and we say that it converges absolutely. The reverse is not true: convergence *does not* imply absolute convergence.
- **Ratio test** -- For a series $\sum a_n$:
 - a) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then the series converges absolutely (so it converges).
 - b) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ or the limit does not exist, then the series diverges.
 - c) If the limit is equal to 1 the test is inconclusive.
- **Root test** -- For a series $\sum a_n$:
 - a) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1$, then the series converges absolutely (so it converges).
 - b) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L > 1$ or the limit does not exist, then the series diverges.
 - c) If the limit is equal to 1 the test is inconclusive.
- Miscellaneous
 - a) If $\lim_{n \to \infty} a_n \neq 0$ for any series $\sum a_n$, then the series diverges.
 - b) $\sum x^n$ is the geometric series and converges for any x satisfying |x| < 1. Then $\sum_{n=1}^{\infty} x^{n-1} = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.
 - c) $\sum \frac{1}{n^p}$ converges for all p > 1 and diverges for all $p \le 1$.

Some strategies to keep in mind:

- a) Usually the best test for an alternating series is the alternating series test. The ratio test might also be useful.
- b) The ratio test is very handy when you have terms involving n^{th} powers or factorials $(x^n, x^{2n-1}, 2^n, (2n)!, etc.)$.
- c) When your terms involve polynomials in n (for example $a_n = \frac{n-1}{n^2 + n}$), one of the comparison tests might do the

trick. Look at the leading terms and compare with an appropriate series.

- d) Be careful, if one of the tests fails, it doesn't mean that the series diverges unless the test specifically says so. Try a different test. This applies when the limit from the ratio or the root test is equal to 1.
- e) It's useful to remember some examples for each of the tests. Also remember, $\sum \frac{1}{n} = \infty$ but $\sum \frac{(-1)^n}{n} < \infty$.