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Abstract. We extend Teichmüller dynamics to a flow on the to-
tal space of a flat bundle of deformation spaces Rep(π,G) of rep-
resentations of the fundamental group π of a fixed surface S. The
resulting dynamical system is a continuous version of the action of
the mapping class group Mod(S) of S on Rep(π,G). We observe
how ergodic properties of the Mod(S)-action relate to this flow.
When G is compact, this flow is strongly mixing over each com-
ponent of Rep(π,G) and of each stratum of the Teichmüller unit
sphere bundle over the Riemann moduli space M(S). We prove er-
godicity for the analogous lift of the Weil-Petersson geodesic local.
flow.
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1. Introduction

This note develops a family of dynamical systems arising from mod-
uli problems in low-dimensional geometry and gauge theory. Moduli
spaces of flat connections (or equivalently of representations of the
fundamental group) are one example. Another example arises from
the classification of locally homogeneous geometric structures. Group
actions arise whose complicated dynamics suggest that the dynamical
systems themselves be viewed as the solution of the classification prob-
lem, rather than the quotient moduli spaces which may be intractable.

This classification is modeled on the classification of Riemann sur-
faces by the Riemann moduli space M(S), the points of which corre-
spond to biholomorphism classes of Riemann surfaces with fixed topol-
ogy S. Although M(S) is complex algebraic variety, it has proved useful
to regard M(S) as the quotient of a more tractable complex manifold,
the Teichmüller space T(S), by the mapping class group Mod(S), a
discrete group of biholomorphisms acting properly on T(S).

This paper initiates a general program for analyzing these classifica-
tion problems. Earlier work (see, for example, Goldman [20]) developed
the study of the action of Mod(S) on deformation spaces Rep(π,G)
of representations, where π = π1(S). In some cases, the action is
proper, with a tractable quotient. Such is the case of the component
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F(S) (when G = PGL(2,R)) of marked hyperbolic structures on S,
where the uniformization theorem identifies the quotient with M(S).
In other cases (such as when G is compact) the action is chaotic, ex-
hibiting dynamical complexity. Here we propose replacing this discrete
group action by an action of a Lie group (either SL(2,R) or its sub-
group A consisting of diagonal matrices), and exploiting deep results
from the well-developed theory of Teichmüller dynamics to obtain finer
dynamical information.

The main new result of this paper is the following observation.
Let G be a Lie group, and S a closed orientable hyperbolic surface

with fundamental group π. Choose a connected component Rep(π,G)τ
of the space Rep(π,G), and a connected component UcM(S) of a stra-
tum of the unit-Teichmüller sphere bundle UM(S) over the Riemann
moduli space M(S). Denote the natural flat Rep(π,G)τ -bundle over
UcM(S) by Uc

τEG(S). Horizontally lift the Teichmüller geodesic flow
from UcT(S) to a flow Φ on Uc

τEG(S), and consider its restriction Φc

to the connected component UcM(S).
Recall that a flow Φ on a probability space (X,µ) is strongly mixing

if for all measurable sets A,B ⊂ X,

lim
t→∞

µ(A ∩ Φt(B)) = µ(A)µ(B).

This is a stronger condition than weakly mixing, which in turn is
stronger than ergodicity. For convenience of the reader, we recall that
Φ is weakly mixing if if for all measurable sets A,B ⊂ X,

lim
T→∞

1

T

∫ T

0

∣∣∣µ(A ∩ Φt(B))− µ(A)µ(B)
∣∣∣dt = 0,

and is ergodic if

lim
T→∞

( 1

T

∫ T

0

µ(A ∩ Φt(B))− µ(A)µ(B)
)
dt = 0.

By the Birkoff-Khinchin pointwise ergodic theorem, ergodicity is equiv-
alent to the condition that every Φ-invariant measurable subset either
has measure zero or its complement has measure zero. One conse-
quence of ergodicity is that if an invariant measure µ is ergodic, then
the orbit of x in the support of µ is dense, for µ-almost every x.
(For further background see one of the standard texts, such as Katok-
Hasselblatt [33], Petersen [45] or Walters [53].)

Theorem. Suppose G is a compact connected Lie group. Consider
a connected component of a stratum UcM(S) of UM(S) and a con-
nected component Rep(π,G)τ of Rep(π,G). The flow Φc on Uc

τEG(S)
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is strongly mixing with respect to a smooth invariant probability mea-
sure on Uc

τEG(S).

The invariant smooth probability measure on Uc
τEG(S) is the measure

induced from the symplectic measure ν on the fiber and the Masur-
Veech measure µc on the base.

Similar techniques enable us to deduce ergodicity for the analogous
lift of the Weil-Petersson geodesic local flow:

Theorem. The horizontal local flow obtained by lifting the Weil-Petersoon
geodesic flow from the Weil-Petersson unit tangent bundle UWP

τ EG(S)
to the flat Rep(π,G)τ -bundle UWP

τ EG(S) is ergodic with respect to a
smooth invariant probability measure.

Finally, we dedicate this paper to Professor Nigel J. Hitchin, whose
pioneering work on moduli spaces has had a profound effect on this
field. In particular, his paper [28] pointed the way to use the variation
of the refined geometry of Rep(π,G) over Teichmüller space to obtain
finite-dimensional representations of Mod(S).

2. Classification of Riemann surfaces: Riemann’s moduli
space

A prototype of the classification of these structures is the analogous
theory of moduli of Riemann surfaces. Begin by fixing a fixed topolog-
ical surface S. The points of the Riemann moduli space M(S) param-
etrize the different complex structures on S, that is, Riemann surfaces
having S as the underlying topology. Although M(S) is not generally a
manifold, it may be understood as the quotient of the Teichmüller space
T(S) by the mapping class group Mod(S). Recall that the Teichmüller
space T(S) comprises equivalence classes of Riemann surfaces M , to-

gether with a homotopy class of homeomorphisms S
f−−→ M (called

markings). Marked Riemann surfaces (M1, f1) and (M2, f2) are equiv-

alent if there is a biholomorphism M1
φ−−→ M2 such that φ ◦ f1 is

isotopic to f2. The marked Riemann surfaces (M, f) are considerably
easier to study: for example T(S) is a contractible complex manifold.
Then M(S) is the quotient of T(S) by the mapping class group

Mod(S) := π0
(
Homeo(S)

)
.

Riemann is credited for considering the moduli space M(S) of Rie-
mann surfaces of fixed topology, which is now known to be a quasi-
projective variety over C. Riemann computed its dimension, and un-
derstood its local structure, long before the modern context and termi-
nology had been developed. Due to Riemann surfaces with nontrivial
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automorphisms, M(S) fails to be a manifold. Nonetheless it enjoys
the structure of a complex orbifold (or V -manifold in the sense of Sa-
take [49]); in particular its underlying topology is Hausdorff.

The classification of Riemann surfaces with the extra structure of a
marking forces us to leave the realm of complex algebraic varieties, but
it provides a more tractable answer, since T(S) is a complex manifold.
Riemann’s moduli space M(S) is then the quotient of T(S) by Mod(S).
Expressing M(S) as a quotient requires the properness of the Mod(S)-
action on T(S), a result attributed to Fricke at the turn of the twentieth
century (although the context for these types of questions seems not
to have been developed at that time).

For background on Teichmüller theory, we recommend Hubbard [30].

3. Classification via deformation spaces of flat
structures

This section summarizes the motivation for our study, namely the
classification of locally homogeneous geometric structures, and the closely
related classification of flat connections. In many interesting and im-
portant cases, the classification reduces to a tractable moduli space,
analogous to Riemann’s moduli space of Riemann surfaces of fixed
topology. However, in general, this construction leads to a non-Hausdorff
quotient. We therefore shift our attention to the dynamical system
arising from the mapping class group action on the space of marked
structures.

3.1. Ehresmann-Thurston geometric structures. The study of
locally homogeneous geometric manifolds was initiated by Ehresmann
in his 1936 paper [12]. (See [22] for a modern general survey, and [16]
for a historical account.) These structures on a manifold M are defined
by local coordinates taking values in a model manifold X which enjoys
a transitive action of a Lie group G. The G-invariant geometry on its
homogeneous space X then transplants locally to M . A familiar ex-
ample a flat Riemannian metric, or a Euclidean structure, where X is
Euclidean space and G is its group of isometries. When G is extended
to the group of affine automorphisms, one obtains (flat) affine struc-
tures, which are more traditionally described as flat torsionfree affine
connections.

A natural question is, given a geometry (G,X) and a topology S,
classify all the geometric structures on S modeled on the G-invariant
geometry of X. One would hope for a moduli space for (G,X)-structures
on S analogous to Riemann’s moduli space M(S).
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Such Ehresmann structures closely relate to the fundamental group
π = π1(S). The charts in the coordinate atlas globalize to a local home-

omorphism M̃
dev−−−→ X, called the developing map and the coordinate

changes globalize to a compatible holonomy homomorphism π
h−−→ G.

The pair (dev, h) determines the structure, and h is unique up to the
action of the group Inn(G) of inner automorphisms of G.

The deformation space D(G,X)(S) consists of equivalence consists of
equivalence classes of marked (G,X)-structures on S, analogous to Te-

ichmüller space. Associating to a marked (G,X)-manifold S
f−−→ M

the conjugacy class of its holonomy homomorphism π1(S)
h−−→ G de-

fines a mapping

D(G,X)(S)
hol−−→ Rep(π,G).

The Ehresmann-Weil-Thurston principle asserts that hol is (essentially)
a local homeomorphism, with respect to a suitable natural topology on
D(G,X)(S), namely the quotient topology induced from the Cr-topology
on developing maps, for 1 ≤ r ≤ ∞. (See [22, 16] and the references
there for more details.)

3.2. Flat connections. The classification of flat connections or flat
bundles is similar. Flat connections on a fixed bundle correspond to a
reduction of the structure group to the discrete topology, in which case
the classification corresponds to that of representations π1(S) −→ G,
up to conjugacy. Taking π to be π1(S) (or any finitely generated group),
and G a Lie group, the space Hom(π,G) admits the structure of an R-
analytic set. If G is an algebraic group of matrices, then Hom(π,G) is
an affine algebraic set. Furthermore Aut(π)×Aut(G) acts on Hom(π,G)
preserving this structure.

The space of flat G-bundles is the quotient space of Hom(π,G) by
the subgroup {1} × Inn(G), denoted

Rep(π,G) := Hom(π,G)/Inn(G).

Here Rep(π,G) is given the quotient topology induced from the classical
topology on Hom(π,G). In general Inn(G) fails to act properly, and
Rep(π,G) is not Hausdorff. Its maximal Hausdorff quotient, in many
cases is the Geometric-Invariant-Theory quotient Hom(π,G)//G, and
called the character variety. We refer to Sikora [50] and Labourie [36]
for further details.

Inn(π) acts trivially as its action is absorbed by the action of Inn(G).
Therefore Rep(π,G) admits a natural action of the outer automorphism
group

Out(π) := Aut(π)/Inn(π).
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When π is the fundamental group π1(S) of a surface S, then the
mapping class group Mod(S) embeds in Out(π) and therefore acts on
Rep(π,G).

3.3. Hyperbolic geometry on surfaces. Consider the special case
when G ∼= PGL(2,R) is the group of isometries of the hyperbolic plane
X = H2. In this special case, Weil [54] proved that hol embeds the
Fricke space F(S) of marked hyperbolic structures on S into an open
subset (indeed, a connected component) of Rep(π,G). The uniformiza-
tion theorem identifies the Fricke space F(S) with the Teichmüller space
T(S). Furthermore this identification F(S) ←→ T(S) is equivariant
with respect to the action of Mod(S). Since Mod(S) acts properly on
T(S), its action on F(S) is proper.

Even when D(G,X)(S) is a nice Hausdorff manifold, the Mod(S)-
action can be extremely chaotic, with a highly intractable quotient.
By Baues [5, 6], the deformation space of complete affine structures
on S = T 2 is homeomorphic to R2 and Mod(S) ∼= GL(2,Z) acts on R2

by the usual linear action. The non-Hausdorff quotient R2/GL(2,Z)
admits no nonconstant continuous functions.

Analogous to the Riemann moduli space M(S) is the quotient
D(G,X)(S)/Mod(S), which looks like Rep(π,G)/Mod(S). However both
quotients may well be unmanageable, as the previous example shows.
Rather than passing to the quotient, we propose that the classification
of (G,X)-structures on S should be the dynamical systems given by
the actions of Mod(S) on D(G,X)(S) and Rep(π,G).

4. Surface group representations

The most detailed information is known when S is a surface and π
is its fundamental group. Under very general conditions [17], the de-
formation spaces admit a symplectic/Poisson geometry defined by the
topology S. This symplectic structure (which is part of a Kähler struc-
ture) was first written down by Narasimhan (unpublished), described
when G is compact by Atiyah-Bott [1] and developed for Lie groups G
for which the adjoint representation of G is orthogonal in [17]. This
geometry is invariant under Mod(S). Denote the smooth measure in-
duced by the symplectic structure by ν. When G is a compact Lie
group, ν is an invariant finite measure (Huebschmann-Jeffrey [31]) and
we normalize ν to be a probability measure on each connected compo-
nent of Rep(π,G).

Giving S a complex structure, Rep(π,G) admits even richer struc-
ture. For example, when G is a compact Lie group, then Rep(π,G)
inherits a Kähler structure subordinate to the symplectic structure,
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generalizing the structure of an abelian variety (the Jacobian) in the
simplest case when G = U(1). ([24] expounds Higgs bundle theory in
the “trivial” case of rank 1. See also [21].) Fundamental is how these
structures deform as a marked Riemann surface S → M varies over
Teichmüller space T(S). This variation is the continuous version of
the action of Mod(S) on Rep(π,G), which we view as a discrete object.

For G complex reductive, Rep(π,G) is complex symplectic, which re-
fines to a hyper-Kähler structure for a marked Riemann surface (f,M)
(Hitchin [27]). These represent reductions of the structure group to its
maximal compact subgroup, namely Sp(2N,R) ⊃ U(N) in the real case
and Sp(2N,C) ⊃ Sp(2N) in the complex case. In this way

Rep(π,G)× T(S) −→ T(S)

is a family of hyper-Kähler manifolds over T(S), with fixed underlying
complex-symplectic structure on the fibers. The quotient

EG(S) :=

(
Rep(π,G)× T(S)

)/
Mod(S)

is a flat Rep(π,G)-bundle over the Riemann moduli space M(S):

Rep(π,G) −−−→ EG(S)y
M(S)

4.1. The isomonodromic foliation. The foliation FG(S) of EG(S)
defining the flat structure is induced by the foliation of the covering
space

Rep(π,G)× T(S) −→ EG(S)

defined by the projection

Rep(π,G)× T(S) −→ Rep(π,G).

It is dynamically equivalent to the Mod(S)-action on Rep(π,G) in the
following sense:

Proposition 4.1. Leaves of FG(S) bijectively correspond to Mod(S)-
orbits on Rep(π,G).

FG(S) is a continuous object corresponding to the Mod(S)-action. For
example, Mod(S)-invariant measures on Rep(π,G) correspond to in-
variant transverse measures for FG(S). However, deep properties of
the geometry of T(S) let us reduce to a dynamically equivalent action
of a connected Lie group.
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4.2. Extending the Teichmüller flow. Teichmüller defined a Finsler
metric on T(S) which is the natural L1-metric on holomorphic qua-
dratic differentials, regarded as (co-)tangent vectors to T(S). The
unit-sphere bundle UT(S) of T(S) then admits a corresponding ge-
odesic flow (which is part of an SL(2,R)-action φ). Lift the foliation
FG(S) to a folation UFG(S) on the flat Rep(π,G)-bundle UEG(S) over
UT(S). This foliation UFG(S) contains an SL(2,R)-action on UEG(S),
whose restriction to the subgroup A ⊂ SL(2,R) of diagonal matrices
is the horizontal extension (with respect to the flat connection) of the
Teichmüller geodesic flow on UT(S). In this way we replace the dy-
namics of the Mod(S)-action on Rep(π,G) by actions of connected Lie
groups on UEG(S).

4.2.1. Review of Teichmüller theory. We briefly review the Teichmüller
flow, referring to Masur [42] and Forni-Matheus [14] for details and
references.

The tangent space to the Teichmüller space T(S) at a marked Rie-
mann surface M identifies with the vector space of holomorphic qua-
dratic differentials on M . The infinitesimal Teichmüller metric is the
Finsler metric arising from the natural L1-norm on quadratic differ-
entials, and we denote the unit sphere bundle by UT(S). There is a
natural stratification of UT(S) by complex submanifolds.

The strata of UT(S) are labeled by the vector of the orders of the
zeroes of the holomorphic quadratic differentials or by the the vector of
the orders of the zeroes of the holomorphic Abelian differentials, when-
ever the quadratic differentials in the stratum are squares of Abelian
differentials. Generally the strata are disconnected. We label the con-
nected components UcT(S) by an index c ∈ π0

(
UT(S)

)
. Kontsevich-

Zorich [34] describes the connected components for strata of Abelian
differentials, and thus the connected components of strata of quadratic
differentials which are squares. Lanneau [37] describes the components
of strata of quadratic differentials which are not squares.

Each component UcT(S) is Mod(S)-invariant, and their quotients

UcM(S) := UcT(S)/Mod(S)

partition the Teichmüller-unit sphere bundle UM(S) of the Riemann
moduli space M(S) = T(S)/Mod(S). Masur [41] and Veech [52] showed
that every connected component UcT(S) (in fact, every stratum) car-
ries a smooth measure µ̂c, whose projection onto the corresponding
component UcM(S) of the moduli space has finite total mass. We call
this measure the Masur-Veech measure and denote it µc.
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A nonzero holomorphic quadratic differential q on a Riemann surface
M determines a conformal Euclidean structure, singular at the zeroes of
q. Composing the developing map M̃ −→ R2 with a unimodular linear
transformation R2 −→ R2 gives a new singular Euclidean structure,
which arises from a holomorphic quadratic differential on a Riemann
surface. In particular this SL(2,R)-action preserves each component,
as well as µc.

The restriction of the SL(2,R) to the subgroup A comprising pos-
itive diagonal matrices is the Teichmüller geodesic flow. By [41, 52],
the Teichmüller geodesic flow on the probability space (UcM(S), µc) is
ergodic. Moore [44] proved an ergodic R-action on a probability space
which extends to a measure-preserving action of SL(2,R) is strongly
mixing. Thus the Teichmüller geodesic flow on (UcM(S), µc) is strongly
mixing.

Veech [52] in fact proved the stronger result that the Teichmüller flow
is non-uniformly hyperbolic, in the sense that all Lyapunov exponents
of its tangent cocycle, with the only exception of the one in the flow
direction, are non-zero. Classical results of Pesin’s theory (see, for
example, Corollary 11.22 of Barreira-Pesin [4]) then imply that the
Teichmüller flow has the Bernoulli property with respect to the Masur-
Veech measures, that is, it is measurably isomorphic to a Bernoulli
shift, and in particular it has completely positive entropy.

The cleanest statement involving the measurable dynamics concerns
the case when Mod(S) acts ergodically on the components of Rep(π,G).
By Goldman [17] and Pickrell-Xia [46, 47], this occurs whenever G is a
compact connected Lie group. For noncompact G, these actions display
both chaotic dynamics and trivial dynamics, and the situation is much
less understood.

4.3. Compact groups. As a first application of these dynamical ideas,
we consider a compact Lie group G.

4.3.1. Connected components of representation varieties. The connected
components of Rep(π,G) correspond to the elements of the fundamen-
tal group π1

(
[G,G]

)
when G is compact or complex reductive [18, 36,

48, 38]. These may be understood in terms of the second obstruction

class of a representation π
ρ−−→ G, which is the obstruction for lifting a

representation from G to its universal covering group G̃ −→ G: Give
π the standard presentation

π := 〈A1, B1, . . . , Ag, Bg | R(A1, B1, . . . , Ag, Bg) = 1〉
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where R denotes the relation

R(A1, B1, . . . , Ag, Bg) := [A1, B1] . . . [Ag, Bg],

[A,B] := ABA−1B−1, and g denotes the genus of S. Lift the images

of the generators ρ(Ai) ∈ G (respectively ρ(Bi) ∈ G) to ρ̃(Ai) ∈ G̃

(respectively
˜

ρ(Bi) ∈ G̃). The element

o(ρ) := R

(
ρ̃(A1), . . . , ρ̃(Bg)

)
∈ G̃

lies in
π1
(
[G,G]

)
⊂ Ker

(
G̃ −→ G

)
and is independent of the choice of lifts (since lifts differ by elements
of π1(G) ⊂ Center(G)). This obstruction class

Rep(π,G)
o−→ π1

(
[G,G]

)
distinguishes the connected components of Rep(π,G). If τ ∈ π1

(
[G,G]

)
,

denote the corresponding component o−1(τ) by Rep(π,G)τ .
Since

π1
(
[G×G,G×G]

) ∼= π1
(
[G,G]

)
× π1

(
[G,G]

)
,

for each τ ∈ π1
(
[G,G]

)
, there is a connected component of Rep(π,G×

G) corresponding to τ × τ , denoted Rep(π,G×G)τ×τ .

4.3.2. Mixing for the extended Teichmüller flow. Let UcM(S) be a con-
nected component of a stratum of UM(S) and Rep(π,G)τ be a con-
nected component of Rep(π,G). As in §4, form the flat Rep(π,G)τ -
bundle

Rep(π,G)τ −−−→ Uc
τEG(S)y

UcM(S)

over UcM(S) whose total space is the quotient

Uc
τEG(S) :=

(
UcT(S)× Rep(π,G)τ

)/
Mod(S).

Theorem 4.2. The horizontal lift of the Teichmüller flow to Uc
τEG(S)

is strongly mixing.

Proof. The proof is essentially a combination of known results.
The first ingredient is the ergodicity of Mod(S) on the components

Rep(π,G)τ as in [17, 46, 47, 25]. Indeed, as noted in [17], the formal
property

Hom(π,G×G) = Hom(π,G)× Hom(π,G),
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its descent to quotients, and the identification of the symplectic mea-
sure on Rep(π,G × G)τ×τ as the product measure ν × ν implies weak
mixing (or double ergodicity as in [17]) of Mod(S) on Rep(π,G)τ .

The next ingredient is the SL(2,R)-action on UcT(S). This action
commutes with the Mod(S)-action on UcT(S), and induces an action
on the quotient

UcM(S) = UcT(S)/Mod(S).

and the Masur-Veech measure µc on UcM(S) is strongly mixing with
respect to the restriction of the SL(2,R)-action to A (the Teichmüller
geodesic flow).

The induced Mod(S) × SL(2,R)-action on the product UcT(S) ×
Rep(π,G)τ is the dynamical system combining these two actions, where
the SL(2,R)-factor acts trivially on Rep(π,G)τ . The product of the
lift to UcT(S) of the Masur-Veech measure µc with the symplectic
measure ν on Rep(π,G)τ defines an invariant smooth measure µcτ on
UcT(S)×Rep(π,G)τ . This measure passes to a probability measure on
its quotient Uc

τEG(S), which is invariant under the induced SL(2,R)-
action.

Lemma 4.3. A acts ergodically on Uc
τEG(S).

Proof of Lemma 4.3. The proof crucially uses the multiplier criterion
for weak mixing, as in in Glasner-Weiss [15]: the diagonal action on a
Cartesian product of any ergodic probability space with a weakly mixing
probability space is ergodic.

From the ergodicity of the action of A on
(
UcM(S), µc

)
, proved by

Masur [41] and Veech [52], it follows immediately, by the definition of
ergodicity, that the action of A ×Mod(S) on

(
UcT(S), µ̂c

)
is ergodic.

Thus, by the multiplier criterion, the weak mixing property of the
A ×Mod(S)-action on Rep(π,G)τ with its symplectic measure (and A
acting trivially), discussed above, implies ergodicity of the action of
A × Mod(S) on the product UcT(S) × Rep(π,G)τ with the product
measure. The quotient by the diagonal Mod(S)-action on the product
UcT(S)×Rep(π,G)τ yields an ergodic A-action on Uc

τEG(S) as claimed.
�

Conclusion of the proof of Theorem 4.2: Observe that the A-action on
Uc
τEG(S) is the restriction of the induced SL(2,R)-action on Uc

τEG(S).
Now, as in §4.2.1, apply Moore’s theorem [44] that an ergodic A-action
of a probability space, which extends to a measure-preserving action of
SL(2,R), is strongly mixing. �

Veech’s work [52] on the Teichmüller flow and Forni’s work [13] on
the lift of the Teichmüller flow to the Hodge bundle suggest:
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Question 4.4. Is the Teichmüller flow on Uc
τEG(S) (non-uniformly)

hyperbolic with respect to the appropriate lift of the Masur-Veech mea-
sure?

In this case, the flow on Uc
τEG(S) is Bernoulli, and the dynamics are

completely understood. Forni [13] answers affirmatively Question 4.4
in the simplest case of G = U(1). Similar questions (ergodicity, non-
uniform hyperbolicity, whether the flow is Bernoulli) can be asked with
respect to other SL(2,R)-invariant probability measures on UcT(S).

4.4. Noncompact groups. The situation is much more interesting
(and less well understood) for noncompact G.

The simplest cases are rather trivial. As in §3.3, let G = PGL(2,R)
and consider the component Rep(π,G)τ = F(S) comprising discrete
embeddings π → G (or, equivalently, marked hyperbolic structures on
S). Then Mod(S) acts properly on Rep(π,G)τ , with quotient corre-
sponding to M(S) by the uniformization theorem. Furthermore the
symplectic measure ν on F(S) identifies with the Weil-Petersson vol-
ume form on Teichmüller space T(S) (see [17]).

In this case each Mod(S)-orbit in Rep(π,G)τ/Mod(S) defines a leaf
of the foliation UFG(S), which maps bijectively to UM(S) if the orbit
is free (that is, if the isotropy group is trivial). The leaf space identifies
with F(S)/Mod(S) ≈M(S). The lifted SL(2,R)-action preserves these
sections, and there is no new dynamics here.

For groups G ⊃ PGL(2,R), representations in Rep(π,G) close to
these Fuchsian representations will also lie in open subsets upon which
Mod(S) acts properly. The above remarks apply in these more gen-
eral cases as well. In particular the Anosov representations defined
by Labourie [35] (see also Guichard-Wienhard [26]) form open subsets
upon which Mod(S) acts properly. (See Burger-Iozzi-Wienhard [7] for
a survey of some of this theory.) In particular Mod(S) acts properly on
the components of Rep(π,G) discovered by Hitchin [29] in the context
of Higgs bundles. For a good survey of some of these developments,
and the closely related subject of actions of free group automorphisms
on character varieties, see Canary [9].

However, in many cases (such as when G is a complex Lie group)
the boundary of this open set admits a chaotic Mod(S)-action (Souto
Storm [51], Goldman [19], Goldman-McShane-Stantchev-Tan [23], and
Maloni-Palesi [39]. In an important special case, Cantat [10] proves
the existence of orbits (when G = SL(2,C) and S is a punctured torus)
whose closure contain both SU(2)-characters and characters of discrete
embeddings. This uses work of Cantat-Loray [11] which also relates
character varieties to the sixth Painléve equation. See the excellent
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survey by Inaba-Iwasaki-Saito [32] and the references therein for the
closely related theory of dynamics of Painléve VI.

For the other components of Rep(π,G), when G = PGL(2,R), it
seems plausible that the Mod(S)-action is ergodic. Marché-Wolff [40]
have proved ergodicity when g = 2. (Actually they show that the
connected component containing the trivial representation has two er-
godic components.) These results can then be interpreted in terms of
the extended Teichmüller flow.

4.5. Weil-Petersson geometry. In a different direction, one can re-
place Teichmüller geometry with Weil-Petersson geometry, obtaining
a different flow with interesting dynamics. For background on Weil-
Petersson theory, we recommend Hubbard [30] and Wolpert [55]. The
Weil-Petersson space is the the complex manifold underlying T(S), but
with its Mod(S)-invariant Weil-Petersson Kähler structure.

The unit tangent bundle UWPT(S) of Weil-Petersson space supports

the geodesic local flow φ̃WP of the Riemannian structure underlying
the Weil-Petersson Kähler structure. Since this Riemannian structure
is incomplete, φ̃WP is only a local flow. However, geodesics fail to be
complete only if they converge to noded Riemann surfaces. In partic-
ular the Weil-Petersson geodesic flow is defined almost everywhere for
all times.

The Weil-Petersson unit tangent bundle UWPM(S) of M(S) is the

quotient UWPT(S)/Mod(S) which inherits a local flow φWP from φ̃WP.
Liouville (Riemannian) measure on UWPM(S) defines a φWP-invariant
probability measure on UWPM(S). Burns, Masur and Wilkinson [8]
proved that the Weil-Petersson geodesic flow is Bernoulli, in particular
mixing.

Recently Burns, Masur, Carlos Matheus and Wilkinson proved that
the rate of mixing is at most polynomial for most strata. However it
it is rapid (super-polynomial) for exceptional strata. See the recent
survey by Carlos Matheus [43] on the dynamics of the Weil-Petersson
flow and references therein.

In contrast, a celebrated result by Avila, Gouëzel and Yoccoz [3]
(generalized by Avila and Gouëzel [2] to all SL(2,R)-invariant prob-
ability measures) implies the mixing rate of the Teichmüller geodesic
flow is exponential.

Let G be a compact Lie group. Consider the flat Rep(π,G)τ bun-
dle UWP

τ EG(S) over the unit-sphere bundle UWPM(S) and, as above,
horizontally lift φWP to a local flow ΦWP on UWP

τ EG(S). Combining
recent results on ergodicity of the Weil-Petersson flow (Burns-Masur-
Wilkinson [8]) with those of Mod(S)-action on Rep(π,G) implies:
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Theorem 4.5. The horizontal lif ΦWP of the Weil-Petersson geodesic
local flow to UWP

τ EG(S) is ergodic with respect to the Lebesgue measure
class.

However, due to the lack of a corresponding SL(2,R)-action for the
Weil-Petersson flow, our methods do not prove mixing.
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MR 3155540 3.2, 4.3.1

37. Erwan Lanneau, Connected components of the strata of the moduli spaces of
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54. André Weil, On discrete subgroups of Lie groups, Ann. of Math. (2) 72 (1960),
369–384. MR 0137792 (25 #1241) 3.3

55. Scott A. Wolpert, Families of Riemann surfaces and Weil-Petersson geome-
try, CBMS Regional Conference Series in Mathematics, vol. 113, Published for
the Conference Board of the Mathematical Sciences, Washington, DC; by the
American Mathematical Society, Providence, RI, 2010. MR 2641916 4.5

Department of Mathematics, University of Maryland, College Park,
MD 20742 USA

E-mail address, Forni: gforni@math.umd.edu

E-mail address, Goldman: wmg@math.umd.edu


	1. Introduction
	2. Classification of Riemann surfaces: Riemann's moduli space
	3. Classification via deformation spaces of flat structures
	3.1. Ehresmann-Thurston geometric structures
	3.2. Flat connections
	3.3. Hyperbolic geometry on surfaces

	4. Surface group representations
	4.1. The isomonodromic foliation
	4.2. Extending the Teichmüller flow
	4.2.1. Review of Teichmüller theory

	4.3. Compact groups
	4.3.1. Connected components of representation varieties
	4.3.2. Mixing for the extended Teichmüller flow

	4.4. Noncompact groups
	4.5. Weil-Petersson geometry

	References

