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Mathematics: a MOST exact science

Natural phenomena understood through quantitative measurements

Which are abstracted into mathematics.
These abstract ideas can be manipulated rigorously to make
predictions.
Mathematical statements form a language in which measurements can
be processed.
Mathematics represents an ideal situation which approximates the
everyday world.

For example:

Rates of change governed by laws of calculus.
Force = Mass · Acceleration.
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Billiards on a square

A billiard ball starts moving once it is subjected to the initial force,
and changes direction when it bounces off the side of a billiard table.

Here is an example of a billiard ball on a square billiard table, which
follows a periodic path.
Here is a longer periodic path. When the slope is rational (a fraction of
two whole numbers), the path is periodic.
When the slope is irrational, the path never closes up, and eventually
fills the whole square.

Example of the inter-relationship between seemingly different subjects
of mathematics: arithmetic (number theory), and differential
equations (mechanics).
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Looking for universal patterns

The same kind of differential equations that govern the motion of a
moving ball can govern population growth, financial markets,
chemical reactions...

Because they exhibit similar patterns.

Mathematics is scalable:

What’s true in the small is true in the large.

Mathematics is reproducible:

Governed only by abstract logic,
And does not need special equipment, just working conditions
conducive for clear thinking.
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Language: striving for intellectual conciseness

Promote recurring patterns into primitive concepts.

Break complicated relationships into simpler ones.
Consolidating definitions creates new concepts.

Sometimes finding the right question is just as important as finding
the right answer!

Asking and answering questions about the simpler concepts creates
new mathematics.

And it keeps on going...
And growing.

More mathematics created in the last 50 years than before.

Challenge: How can you learn enough of what has already been done
to create new mathematics?
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Art: beauty in the simplicity of ideas

Sensing a familiar pattern in an unexpected setting;

Familiarity is not only reassuring but empowering.

The patterns into which old patterns are broken lead to new patterns.
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The Golden Ratio

The Parthenon is in the proportion of the Golden Ratio:

φ =
1 +
√

5

2
≈ 1.618033988749894848204586834365638117720309179805762862135448622705260462

which also appears in the geometry of a seashell.
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A fraction which continues...

φ ≈ 1.618 . . . satisfies the algebraic equation

φ = 1 +
1

φ

Replacing φ by 1 + 1
φ in this expression:

φ = 1 +
1

φ
= 1 +

1

1 + 1
φ

= 1 +
1

1 + 1
1+ 1

φ

φ = 1 +
1

1 +
1

1 +
1

1 + . . .
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What does this infinite fraction mean?

This infinite expression is meaningless until we give it meaning!

Mathematicians change the questions to fit the answers!

For example, define it to be the limit of the sequence
1, 1 + 1

1 = 2, 1 + 1
2 = 3

2 , 1 + 1
3/2 = 5

3 , 1 + 1
5/3 = 8

5 , 1 + 1
8/5 = 13

8 , . . .

Numerators and denominators are Fibonacci numbers:

Approximate φ with billiards!
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The wrong way to add fractions

Notice a pattern in the sequence of fractions approximating φ:

1

1
,

2

1
,

3

2
,

5

3
,

8

5
,

13

8
,

21

13
,

34

21
,

55

34
,

89

55
, . . .

Each fraction is obtained from the preceding pair by adding
numerators and denominators:

a

b
⊕ c

d
=

a + c

b + d
.
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Farey series

List the fractions (in order) with denominator ≤ n:

Each fraction is obtained from the two closest ones above by adding
numerators and denominators: a

b ⊕
c
d = a + c

b + d .

n = 6 :
0
1 ,

1
5 ,

1
6 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

5
6 ,

1
1 ,

7
6 ,

6
5 ,

5
4 ,

4
3 ,

7
5 ,

3
2 ,

8
5 ,

5
3 ,

7
4 ,

9
5 ,

11
6 ,

2
1

John Farey, Sr. (1766–1826), a British geologist, was led to these
discoveries through his interest in the mathematics of sound.
(Philosophical Magazine 1816).
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How a mathematical concept is created

A pattern is isolated.

Focus on its essential qualitites.

Promote it to a new concept

Give it a definition.

Relate it to already defined concepts through theorems,
which must be rigorously proved!

The right definitions may make the theorems much easier to prove.

Similar to art: a human representation of an abstract pattern.

() Pool on curved surfaces
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Challenges to doing mathematics

Its unique nature leads to basic challenges in its teaching, communication,
and dissemination, unlike any other intellectual discipline.
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A remarkably successful discipline

Mathematics goes back thousands of years, and ...

continues to grow.

Old mathematics is not discarded ...

but condensed.

Leading to challenges in disseminating, organizing, teaching ...

As more common relationships are discovered, ideas generalize ...
and the subject becomes more and more abstract ...

And specialized.

() Pool on curved surfaces
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Going out of control?

Too many subdivisions...
Despite basic unity, a natural tendency to splinter.

Specialization must be controlled and resisted as the subject develops.

Last 30 years: remarkable confluence of mathematical ideas.
Making it even harder to learn!

The Tower of Babel
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Investing in mathematics is investing in people!

The speakers of a specialized language...
Are the audience ...
And the practitioners...
And the developers ...
And the first users.

Build a community of technically literate and creative people.
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Mathematics:A fundamentally human activity.

Terrapins work out the equations of straight lines on curved surfaces.
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Building communities to promote mathematics

Potomac High School students visit the Experimental Geometry Lab.
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Why support mathematics?

A rapidly changing society needs people who can:

Learn and work with abstract ideas,
Communicate them effectively

... all in a short period of time...
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A community activity
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Summary

Mathematics:

A Science: a rigorous exact discipline which formulates statements
modeling natural phenomena.

A Language: a collection of ideas, represented symbolically and
organized into units of communication.

An art: an esthetic activity, characterized by elegance and simplicity,
despite its innate complexity.
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Summary

These three roles complement each other in a unique way.

And the growth of mathematics leads to serious challenges in

Training,
Disseminating,
Communicating.

Mathematics: A fundamentally human activity.

Let’s enrich our society with communities of literate, knowledgeable
and creative mathematicians

At All Levels!
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Playing pool on curved surfaces...
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