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Representations of surface groups

Let Σ be a compact surface of χ(Σ) < 0 with fundamental
group π = π1(Σ).
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Representations of surface groups

Let Σ be a compact surface of χ(Σ) < 0 with fundamental
group π = π1(Σ).

Since π is finitely generated, Hom(π,G ) is an algebraic
set, for any algebraic Lie group G .
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Representations of surface groups

Let Σ be a compact surface of χ(Σ) < 0 with fundamental
group π = π1(Σ).

Since π is finitely generated, Hom(π,G ) is an algebraic
set, for any algebraic Lie group G .

This algebraic structure is invariant under the natural
action of Aut(π) × Aut(G ).
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Representations of surface groups

Let Σ be a compact surface of χ(Σ) < 0 with fundamental
group π = π1(Σ).

Since π is finitely generated, Hom(π,G ) is an algebraic
set, for any algebraic Lie group G .

This algebraic structure is invariant under the natural
action of Aut(π) × Aut(G ).

The mapping class group Mod(Σ) ∼= Aut(π)/Inn(π) acts
on Hom(π,G )/G .
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Representations of surface groups

Let Σ be a compact surface of χ(Σ) < 0 with fundamental
group π = π1(Σ).

Since π is finitely generated, Hom(π,G ) is an algebraic
set, for any algebraic Lie group G .

This algebraic structure is invariant under the natural
action of Aut(π) × Aut(G ).

The mapping class group Mod(Σ) ∼= Aut(π)/Inn(π) acts
on Hom(π,G )/G .

Representations π
ρ
−→ G arise from locally homogeneous

geometric structures on Σ, modelled on homogeneous
spaces of G .
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Flat connections

Representations π1(Σ) −→ G correspond to flat connections on
G -bundles over Σ. Let X be a G -space.
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Flat connections

Representations π1(Σ) −→ G correspond to flat connections on
G -bundles over Σ. Let X be a G -space.

Let Σ̃ −→ Σ be a universal covering space. The diagonal
action of π on the trivial X -bundle

Σ̃ × X −→ Σ̃

is proper and free, where the action on X is defined by ρ.
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Flat connections

Representations π1(Σ) −→ G correspond to flat connections on
G -bundles over Σ. Let X be a G -space.

Let Σ̃ −→ Σ be a universal covering space. The diagonal
action of π on the trivial X -bundle

Σ̃ × X −→ Σ̃

is proper and free, where the action on X is defined by ρ.

The quotient

Xρ := (Σ̃ × X )/π −→ Σ

is a (G ,X )-bundle over Σ associated to ρ.
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Flat connections

Representations π1(Σ) −→ G correspond to flat connections on
G -bundles over Σ. Let X be a G -space.

Let Σ̃ −→ Σ be a universal covering space. The diagonal
action of π on the trivial X -bundle

Σ̃ × X −→ Σ̃

is proper and free, where the action on X is defined by ρ.

The quotient

Xρ := (Σ̃ × X )/π −→ Σ

is a (G ,X )-bundle over Σ associated to ρ.

Such bundles correspond to flat connections on the
associated principal G -bundle over Σ (take X = G with
right-multiplication).
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Flat connections

Representations π1(Σ) −→ G correspond to flat connections on
G -bundles over Σ. Let X be a G -space.

Let Σ̃ −→ Σ be a universal covering space. The diagonal
action of π on the trivial X -bundle

Σ̃ × X −→ Σ̃

is proper and free, where the action on X is defined by ρ.

The quotient

Xρ := (Σ̃ × X )/π −→ Σ

is a (G ,X )-bundle over Σ associated to ρ.

Such bundles correspond to flat connections on the
associated principal G -bundle over Σ (take X = G with
right-multiplication).

Topological invariants of this bundle define invariants of
the representation.
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Characteristic classes

The first characteristic invariant corresponds to the
connected components of G :

Hom(π,G ) −→ Hom
(
π, π0(G )

)
∼= H1

(
Σ, π0(G )

)
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Characteristic classes

The first characteristic invariant corresponds to the
connected components of G :

Hom(π,G ) −→ Hom
(
π, π0(G )

)
∼= H1

(
Σ, π0(G )

)

G = GL(n, R),O(n): the first Stiefel-Whitney class

detects orientability of the associated vector bundle.
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Compact and complex semisimple groups

Now suppose G is connected. The next invariant obstructs

lifting ρ to the universal covering group G̃ −→ G :

Hom(π,G )
o2−→ H2

(
Σ, π1(G )

)
∼= π1(G )
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Compact and complex semisimple groups

Now suppose G is connected. The next invariant obstructs

lifting ρ to the universal covering group G̃ −→ G :

Hom(π,G )
o2−→ H2

(
Σ, π1(G )

)
∼= π1(G )

When G is a connected complex or compact semisimple

Lie group, then o2 defines an isomorphism

π0

(
Hom(π,G )

) ∼=
−→ π1(G ).

(Narasimhan–Seshadri, Atiyah–Bott, Ramanathan,
Goldman, Jun Li,
Rapinchuk–Chernousov–Benyash-Krivets, . . . )
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Closed orientable surfaces

Decompose a surface of genus g

�
�
�
�

a1b1

a2
b2

as a 4g -gon with its edges identified in 2g pairs and all vertices
identified to a single point.

 
a1

b1

a2

b2
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Presentation of π1(Σ)

〈A1, . . . ,Bg | A1B1A
−1
1 B−1

1 . . . AgBgA−1
g B−1

g = 1〉
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Presentation of π1(Σ)

〈A1, . . . ,Bg | A1B1A
−1
1 B−1

1 . . . AgBgA−1
g B−1

g = 1〉

A representation ρ is determined by the 2g -tuple

(α1, . . . , βg ) ∈ G 2g

satisfying
[α1, β1] . . . [αg , βg ] = 1.

Take αi = ρ(Ai ) and βi = ρ(Bi ).
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Presentation of π1(Σ)

〈A1, . . . ,Bg | A1B1A
−1
1 B−1

1 . . . AgBgA−1
g B−1

g = 1〉

A representation ρ is determined by the 2g -tuple

(α1, . . . , βg ) ∈ G 2g

satisfying
[α1, β1] . . . [αg , βg ] = 1.

Take αi = ρ(Ai ) and βi = ρ(Bi ).

To compute o2(ρ), lift the images of the generators

α̃1, . . . , β̃g ∈ G̃ .
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The second obstruction

Evaluate the relation:

[α̃1, β̃1] . . . , [α̃g , β̃g ]
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The second obstruction

Evaluate the relation:

[α̃1, β̃1] . . . , [α̃g , β̃g ]

Lives in
Ker

(
G̃ −→ G

)
= π1(G ).
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The second obstruction

Evaluate the relation:

[α̃1, β̃1] . . . , [α̃g , β̃g ]

Lives in
Ker

(
G̃ −→ G

)
= π1(G ).

Independent of choice of lifts.
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The second obstruction

Evaluate the relation:

[α̃1, β̃1] . . . , [α̃g , β̃g ]

Lives in
Ker

(
G̃ −→ G

)
= π1(G ).

Independent of choice of lifts.

Equals o2(ρ) ∈ π1(G ).
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Euler class

When G = PSL(2, R) the group of orientation-preserving
isometries of H2, then o2 is the Euler class of the
associated flat oriented H2-bundle over Σ.



Algebraic
varieties of

surface group
representa-

tions

Surface groups

Characteristic
classes

Hyperbolic
geometry

PSL(2, C)

SU(n, 1)

Singularities

Euler class

When G = PSL(2, R) the group of orientation-preserving
isometries of H2, then o2 is the Euler class of the
associated flat oriented H2-bundle over Σ.

|e(ρ)| ≤ |χ(Σ)| (Milnor 1958, Wood 1971)
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Euler class

When G = PSL(2, R) the group of orientation-preserving
isometries of H2, then o2 is the Euler class of the
associated flat oriented H2-bundle over Σ.

|e(ρ)| ≤ |χ(Σ)| (Milnor 1958, Wood 1971)
Equality ⇐⇒ ρ discrete embedding. (Goldman 1980)
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Euler class

When G = PSL(2, R) the group of orientation-preserving
isometries of H2, then o2 is the Euler class of the
associated flat oriented H2-bundle over Σ.

|e(ρ)| ≤ |χ(Σ)| (Milnor 1958, Wood 1971)
Equality ⇐⇒ ρ discrete embedding. (Goldman 1980)

ρ corresponds to a hyperbolic structure on Σ
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Euler class

When G = PSL(2, R) the group of orientation-preserving
isometries of H2, then o2 is the Euler class of the
associated flat oriented H2-bundle over Σ.

|e(ρ)| ≤ |χ(Σ)| (Milnor 1958, Wood 1971)
Equality ⇐⇒ ρ discrete embedding. (Goldman 1980)

ρ corresponds to a hyperbolic structure on Σ

H2
ρ
∼= TΣ.
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Euler class

When G = PSL(2, R) the group of orientation-preserving
isometries of H2, then o2 is the Euler class of the
associated flat oriented H2-bundle over Σ.

|e(ρ)| ≤ |χ(Σ)| (Milnor 1958, Wood 1971)
Equality ⇐⇒ ρ discrete embedding. (Goldman 1980)

ρ corresponds to a hyperbolic structure on Σ

H2
ρ
∼= TΣ.

Uniformization: maximal component of
Hom(π,PSL(2, R))/PSL(2, R) identifies with Teichmüller

space TΣ of marked hyperbolic structures on Σ.
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Euler class

When G = PSL(2, R) the group of orientation-preserving
isometries of H2, then o2 is the Euler class of the
associated flat oriented H2-bundle over Σ.

|e(ρ)| ≤ |χ(Σ)| (Milnor 1958, Wood 1971)
Equality ⇐⇒ ρ discrete embedding. (Goldman 1980)

ρ corresponds to a hyperbolic structure on Σ

H2
ρ
∼= TΣ.

Uniformization: maximal component of
Hom(π,PSL(2, R))/PSL(2, R) identifies with Teichmüller

space TΣ of marked hyperbolic structures on Σ.

Component of Hom(π,PSL(2, R))/PGL(2, R) consisting
exactly of discrete embeddings.
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Maximal component

Generalizes Kneser’s theorem on maps Σ
f
−→ Σ′ between

closed oriented surfaces:
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Maximal component

Generalizes Kneser’s theorem on maps Σ
f
−→ Σ′ between

closed oriented surfaces:

| deg(f )χ(Σ′)| ≤ |χ(Σ)|
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Maximal component

Generalizes Kneser’s theorem on maps Σ
f
−→ Σ′ between

closed oriented surfaces:

| deg(f )χ(Σ′)| ≤ |χ(Σ)|
Equality ⇐⇒ f homotopic to a covering-space.
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Maximal component

Generalizes Kneser’s theorem on maps Σ
f
−→ Σ′ between

closed oriented surfaces:

| deg(f )χ(Σ′)| ≤ |χ(Σ)|
Equality ⇐⇒ f homotopic to a covering-space.

Components of Hom
(
π,PSL(2, R)

)
are the 4g − 3

nonempty preimages of

Hom(π,PSL(2, R))
e
−→ Z.

(G, Hitchin)
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Branched hyperbolic structures

Representations in other components arise from hyperbolic
structures with isolated conical singularities of cone angles 2πk,
where k ≥ 1.
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Branched hyperbolic structures

Representations in other components arise from hyperbolic
structures with isolated conical singularities of cone angles 2πk,
where k ≥ 1.

The holonomy representation of a hyperbolic surface with
cone angles 2πki extends to π1(Σ) with Euler number

e(ρ) = 2 − 2g +
∑

(ki − 1).
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Branched hyperbolic structures

Representations in other components arise from hyperbolic
structures with isolated conical singularities of cone angles 2πk,
where k ≥ 1.

The holonomy representation of a hyperbolic surface with
cone angles 2πki extends to π1(Σ) with Euler number

e(ρ) = 2 − 2g +
∑

(ki − 1).

For example, such structures arise from identifying
polygons in H2 If the sum of the interior angles is 2πk,
where k ∈ Z, then quotient space is a hyperbolic surface
with one singularity (the image of the vertex) with cone
angle 2πk.
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A hyperbolic surface of genus two
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A hyperbolic surface of genus two

Identifying a regular octagon with angles π/4 yields a
nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.
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A hyperbolic surface of genus two

Identifying a regular octagon with angles π/4 yields a
nonsingular hyperbolic surface with e(ρ) = χ(Σ) = −2.
But when the angles are π/2, the surface has one
singularity with cone angle 4π and

e(ρ) = 1 + χ(Σ) = −1.
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The other components: symmetric powers

Each component of Hom(π,PSL(2, R)) contains holonomy
of branched hyperbolic structures.
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The other components: symmetric powers

Each component of Hom(π,PSL(2, R)) contains holonomy
of branched hyperbolic structures.

e−1(2 − 2g + k) deformation retracts onto Symk(Σ) for
0 ≤ k < 2g − 2. (Hitchin 1987)
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The other components: symmetric powers

Each component of Hom(π,PSL(2, R)) contains holonomy
of branched hyperbolic structures.

e−1(2 − 2g + k) deformation retracts onto Symk(Σ) for
0 ≤ k < 2g − 2. (Hitchin 1987)

If Σ
f
−→ Σ1 is a degree one map not homotopic to a

homeomorphism, and Σ1 is a hyperbolic structure with
holonomy φ1, then the composition

π1(Σ)
f∗−→ π1(Σ1)

φ1
−→ PSL(2, R)

is not the holonomy of a branched hyperbolic structure.
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The other components: symmetric powers

Each component of Hom(π,PSL(2, R)) contains holonomy
of branched hyperbolic structures.

e−1(2 − 2g + k) deformation retracts onto Symk(Σ) for
0 ≤ k < 2g − 2. (Hitchin 1987)

If Σ
f
−→ Σ1 is a degree one map not homotopic to a

homeomorphism, and Σ1 is a hyperbolic structure with
holonomy φ1, then the composition

π1(Σ)
f∗−→ π1(Σ1)

φ1
−→ PSL(2, R)

is not the holonomy of a branched hyperbolic structure.

Conjecture: every representation with dense image occurs
as the holonomy of a branched hyperbolic structure.
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Quasi-Fuchsian groups

The group of orientation-preserving isometries of H3
R

equals
PSL(2, C). Close to Fuchsian representations in PSL(2, R) are
quasi-Fuchsian representations.

Quasi-fuchsian representations are discrete embeddings.
QF ≈ TΣ × TΣ (Bers 1960)
The closure of QF consists of all discrete embeddings
π →֒ PSL(2, C) (Thurston-Bonahon 1984)
The discrete embeddings are not open and do not
comprise a component of Hom(π,G )/G .



Algebraic
varieties of

surface group
representa-

tions

Surface groups

Characteristic
classes

Hyperbolic
geometry

PSL(2, C)

SU(n, 1)

Singularities

Complex hyperbolic geometry

Complex hyperbolic space Hn
C

is the unit ball in C
n with

the Bergman metric invariant under the projective
transformations in CP

n.

x             y

x                  

y
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Complex hyperbolic geometry

Complex hyperbolic space Hn
C

is the unit ball in C
n with

the Bergman metric invariant under the projective
transformations in CP

n.

x             y

x                  

y

C-linear subspaces meet Hn
C

in totally geodesic subspaces.
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Deforming discrete groups

Start with a discrete embedding π
ρ0
−→ U(1, 1) acting on a

complex geodesic H1
C
⊂ Hn

C
.
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Deforming discrete groups

Start with a discrete embedding π
ρ0
−→ U(1, 1) acting on a
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.
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−→ U(n, 1) stabilizes a

complex geodesic, and is conjugate to a discrete
embedding

π
ρ
−→ U(1, 1) × U(n − 1) ⊂ U(n, 1).
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Deforming discrete groups

Start with a discrete embedding π
ρ0
−→ U(1, 1) acting on a

complex geodesic H1
C
⊂ Hn

C
.

Every nearby deformation π
ρ
−→ U(n, 1) stabilizes a

complex geodesic, and is conjugate to a discrete
embedding

π
ρ
−→ U(1, 1) × U(n − 1) ⊂ U(n, 1).

The deformation space is
TΣ × Hom

(
π, U(n − 1)

)
/U(n − 1).

ρ characterized by maximality of Z-valued characteristic

class generalizing Euler class. (Toledo 1986)

Generalized to maximal representations by
Burger-Iozzi-Wienhard and
Bradlow-Garcia-Prada-Gothen-Mundet.
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In general the analytic germ of a reductive representation

of the fundamental group of a compact Kähler manifold is
defined by a system of homogeneous quadratic equations.
(Goldman–Millson 1988, with help from Deligne)
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Singularities in Hom(π, G )

Singular points in Hom(π,G )!

In general the analytic germ of a reductive representation

of the fundamental group of a compact Kähler manifold is
defined by a system of homogeneous quadratic equations.
(Goldman–Millson 1988, with help from Deligne)

Deformation theory: twisted version of the formality of
the rational homotopy type of compact Kähler manifolds
(Deligne-Griffiths-Morgan-Sullivan 1975).
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The deformation groupoid

Objects in the deformation theory correspond to flat

connections, gAdρ-valued 1-forms ω on Σ satisying the
Maurer-Cartan equations:

Dω +
1

2
[ω, ω] = 0.
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The deformation groupoid

Objects in the deformation theory correspond to flat

connections, gAdρ-valued 1-forms ω on Σ satisying the
Maurer-Cartan equations:

Dω +
1

2
[ω, ω] = 0.

Morphisms in the deformation theory correspond to
infinitesimal gauge transformations, sections η of gAdρ:

ω
η

7−→ ead(η)
(
ω
)

+ D

(
ead(η) − 1

ad(η)

)
.
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The deformation groupoid

Objects in the deformation theory correspond to flat

connections, gAdρ-valued 1-forms ω on Σ satisying the
Maurer-Cartan equations:

Dω +
1

2
[ω, ω] = 0.

Morphisms in the deformation theory correspond to
infinitesimal gauge transformations, sections η of gAdρ:

ω
η

7−→ ead(η)
(
ω
)

+ D

(
ead(η) − 1

ad(η)

)
.

This groupoid is equivalent to the groupoid whose objects
form Hom(π,G ) and the morphisms Inn(G ).
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The quadratic cone

The Zariski tangent space to the flat connections equals
Z 1(Σ, gAdρ):

Dω = 0,

the linearization of the Maurer-Cartan equation.
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The quadratic cone

The Zariski tangent space to the flat connections equals
Z 1(Σ, gAdρ):

Dω = 0,

the linearization of the Maurer-Cartan equation.

ω is tangent to an analytic path ⇐⇒

[ω, ω] = 0 ∈ H2(Σ, gAdρ).
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The quadratic cone

The Zariski tangent space to the flat connections equals
Z 1(Σ, gAdρ):

Dω = 0,

the linearization of the Maurer-Cartan equation.

ω is tangent to an analytic path ⇐⇒

[ω, ω] = 0 ∈ H2(Σ, gAdρ).

An explicit exponential map from the quadratic cone in
Z 1(Σ, gAdρ) can be constructed from Hodge theory:

ω 7−→
(
I + ∂̄∗

Dad(ω(0,1))
)
−1

(ω).
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Complex hyperbolic surfaces

Consider a discrete embedding π
ρ0
−→ SU(1, 1) and its

neighborhood in Hom(π,U(n, 1)).
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).
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Complex hyperbolic surfaces

Consider a discrete embedding π
ρ0
−→ SU(1, 1) and its

neighborhood in Hom(π,U(n, 1)).

The full Zariski tangent space is Z 1(Σ, su(n, 1)Adρ0
).

Ad(U(1, 1))-invariant decomposition of Lie algebras

u(n, 1)Ad(U(1,1)) =

(
u(1, 1)Ad⊕u(n−1)

)
⊕

(
C

1,1⊗C
n−1

)

=⇒ Zariski tangent space decomposes:

Z 1
(
Σ, u(1, 1)Adρ0

⊕ u(n − 1)
)
⊕ Z 1(Σ, C1,1 ⊗ C

n−1
ρ0

).
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Complex hyperbolic surfaces

Consider a discrete embedding π
ρ0
−→ SU(1, 1) and its

neighborhood in Hom(π,U(n, 1)).

The full Zariski tangent space is Z 1(Σ, su(n, 1)Adρ0
).

Ad(U(1, 1))-invariant decomposition of Lie algebras

u(n, 1)Ad(U(1,1)) =

(
u(1, 1)Ad⊕u(n−1)

)
⊕

(
C

1,1⊗C
n−1

)

=⇒ Zariski tangent space decomposes:

Z 1
(
Σ, u(1, 1)Adρ0

⊕ u(n − 1)
)
⊕ Z 1(Σ, C1,1 ⊗ C

n−1
ρ0

).

The quadratic form reduces to the cup-product

H1(Σ, C1,1
ρ0

) × H1(Σ, C1,1
ρ0

) −→ H2(Σ, R) ∼= R,

coefficients C
1,1
ρ0 paired by

(z1, z2) 7−→ Im〈z1, z2〉.
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Second order rigidity

Zariski normal space H1(Σ, C1,1
ρ0 ) ∼= C

4g−4.
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4g−4.

Signature of defining quadratic form equals 2e(ρ0).
(Werner Meyer 1971)
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Algebraic
varieties of

surface group
representa-

tions

Surface groups

Characteristic
classes

Hyperbolic
geometry

PSL(2, C)

SU(n, 1)

Singularities

Second order rigidity

Zariski normal space H1(Σ, C1,1
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4g−4.

Signature of defining quadratic form equals 2e(ρ0).
(Werner Meyer 1971)

Signature ≤ Dimension =⇒ Milnor-Wood.
Equality ⇐⇒ the quadratic form is definite.
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Second order rigidity

Zariski normal space H1(Σ, C1,1
ρ0 ) ∼= C

4g−4.

Signature of defining quadratic form equals 2e(ρ0).
(Werner Meyer 1971)

Signature ≤ Dimension =⇒ Milnor-Wood.
Equality ⇐⇒ the quadratic form is definite.
Local rigidity.

∀ even e with |e| ≤ 2g − 2, corresponding component of
Hom(π,SU(2, 1)) contains discrete embeddings.

(Goldman–Kapovich–Leeb 2001)
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Another approach to positivity

When ρ0 is a discrete embedding, the quadratic form
arises from the Petersson pairing on automorphic forms.
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Another approach to positivity

When ρ0 is a discrete embedding, the quadratic form
arises from the Petersson pairing on automorphic forms.

Riemann surface X := H2/ρ0(π) ≈ Σ.
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Another approach to positivity

When ρ0 is a discrete embedding, the quadratic form
arises from the Petersson pairing on automorphic forms.

Riemann surface X := H2/ρ0(π) ≈ Σ.

Hodge decomposition:

H1(X , C1,1
ρ0

) = H1,0(X , C1,1
ρ0

) ⊕ H0,1(X , C1,1
ρ0

).
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Another approach to positivity

When ρ0 is a discrete embedding, the quadratic form
arises from the Petersson pairing on automorphic forms.

Riemann surface X := H2/ρ0(π) ≈ Σ.

Hodge decomposition:

H1(X , C1,1
ρ0

) = H1,0(X , C1,1
ρ0

) ⊕ H0,1(X , C1,1
ρ0

).

Eichler-Shimura isomorphisms

H0,1(X , C1,1
ρ0

) ∼= H0(X ,K 3/2)

H1,0(X , C1,1
ρ0

) ∼= H0(X ,K 3/2)

carries cup-product/symplectic coefficient pairing to L2

Hermitian product on weight 3 automorphic forms.
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Happy Birthday,
Professor Hirzebruch!
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