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representa- Let ¥ be a compact surface of x(X) < 0 with fundamental
group ™ = m1(X).

Surface groups m Since 7 is finitely generated, Hom(m, G) is an algebraic
set, for any algebraic Lie group G.

m This algebraic structure is invariant under the natural
action of Aut(7) x Aut(G).

m The mapping class group Mod(X) = Aut(7)/Inn(7) acts
on Hom(w, G)/G.

m Representations 7 2, G arise from locally homogeneous

geometric structures on Y, modelled on homogeneous
spaces of G.
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Flat connections

Al Representations 7m1(X) — G correspond to flat connections on

varieties of

surface group G-bundles over ¥. Let X be a G-space.
representa- ~
e m Let ¥ — ¥ be a universal covering space. The diagonal
action of 7 on the trivial X-bundle
Surface groups ~ -
T x X —X

is proper and free, where the action on X is defined by p.
m The quotient

X, = (Xx X)/m — X

is a (G, X)-bundle over ¥ associated to p.

m Such bundles correspond to flat connections on the
associated principal G-bundle over ¥ (take X = G with
right-multiplication).

m Topological invariants of this bundle define invariants of
the representation.
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m The first characteristic invariant corresponds to the
connected components of G:

Characteristic
classes

Hom(m, G) — Hom (7, mo(G)) = H? (Z,m0(G))

m G = GL(n,R),0(n): the first Stiefel-Whitney class
detects orientability of the associated vector bundle.
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representa-

e lifting p to the universal covering group G — G:

Hom(rm, G) 2% 2 H2(Z,m1(G)) = m1(G)

Characteristic
classes

m When G is a connected complex or compact semisimple
Lie group, then 0, defines an isomorphism

o (Hom(m, G)) = m1(G).

(Narasimhan—Seshadri, Atiyah—Bott, Ramanathan,
Goldman, Jun Li,
Rapinchuk—Chernousov—Benyash-Krivets, . ..)
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as a 4g-gon with its edges identified in 2g pairs and all vertices
identified to a single point.
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tions

m A representation p is determined by the 2g-tuple

2
Characteristic (a17 e 7/6g) 6 G €

classes
satisfying

[a1, 8] .- - [ag, Bg] = 1.
Take a; = p(A;) and 3; = p(B)).

m To compute 0,(p), lift the images of the generators

a1,..., 05 €G.
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Evaluate the relation:

[61,61] ..., [, Bg]

Characteristic
classes

Lives in

Ker(G — G) = m1(G).

Independent of choice of lifts.
Equals 02(p) € m1(G).
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Algebraic
varieties of
surface group
representas m When G = PSL(2,R) the group of orientation-preserving
isometries of H2, then o0, is the Euler class of the

associated flat oriented H2-bundle over Y.
m |e(p)| < |x(X)| (Milnor 1958, Wood 1971)
m Equality <= p discrete embedding. (Goldman 1980)

Hypertzolic m p corresponds to a hyperbolic structure on ¥
geometry
m H2=TY.

m Uniformization: maximal component of
Hom(m, PSL(2,R))/PSL(2,R) identifies with Teichmiiller
space Ty of marked hyperbolic structures on ¥.

m Component of Hom(w, PSL(2,R))/PGL(2,R) consisting
exactly of discrete embeddings.
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. , f
m Generalizes Kneser's theorem on maps ¥ — Y’ between
closed oriented surfaces:

m | deg(F)x(Z)] < [x(¥)]
m Equality <= f homotopic to a covering-space.
Hyperbolic

geometry m Components of Hom(7, PSL(2,R)) are the 4g — 3
nonempty preimages of

Hom(m, PSL(2,R)) = Z.

(G, Hitchin)
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Branched hyperbolic structures

Algebraic
P f - - M H
A Representations in other components arise from hyperbolic

surface group

representas structures with isolated conical singularities of cone angles 27k,
where k > 1.

m The holonomy representation of a hyperbolic surface with
cone angles 27k; extends to 71 (X) with Euler number

Hyperbolic

geometry e(p) =2 2g + Z(kl - 1)

m For example, such structures arise from identifying
polygons in H? If the sum of the interior angles is 27k,
where k € 7Z, then quotient space is a hyperbolic surface
with one singularity (the image of the vertex) with cone
angle 2mk.
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m |dentifying a regular octagon with angles 7 /4 yields a
nonsingular hyperbolic surface with e(p) = x(X) = —2.

m But when the angles are 7/2, the surface has one
singularity with cone angle 47 and

e(p) =1+ x(X)=-1.
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LD Each component of Hom(7, PSL(2,R)) contains holonomy

representa-

tions of branched hyperbolic structures.

m e (2 — 2g + k) deformation retracts onto Sym*(X) for
0 < k < 2g — 2. (Hitchin 1987)

f . :
. m If ¥ — ¥ is a degree one map not homotopic to a
gecmetry homeomorphism, and X1 is a hyperbolic structure with
holonomy ¢1, then the composition

m1(X) LN m1(X1) #, PSL(2,R)

is not the holonomy of a branched hyperbolic structure.

m Conjecture: every representation with dense image occurs
as the holonomy of a branched hyperbolic structure.
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tions quasi-Fuchsian representations.
m Quasi-fuchsian representations are discrete embeddings.
m OF ~ Ty x Ty (Bers 1960)
m The closure of QF consists of all discrete embeddings
7w — PSL(2,C) (Thurston-Bonahon 1984)
m The discrete embeddings are not open and do not

comprise a component of Hom(w, G)/G.
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representa-

tions the Bergman metric invariant under the projective
transformations in CP".

J

m C-linear subspaces meet Hf, in totally geodesic subspaces.
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Deforming discrete groups

varitios of m Start with a discrete embedding 7 £% U(1,1) acting on a

surface group .
representa- complex geodesic H%: C HE.

tions

m Every nearby deformation m 2 U(n, 1) stabilizes a
complex geodesic, and is conjugate to a discrete
embedding

w2 U(1,1) x U(n— 1) € U(n, 1).

m The deformation space is
Ts x Hom(m, U(n —1))/U(n —1).
m p characterized by maximality of Z-valued characteristic
class generalizing Euler class. (Toledo 1986)
m Generalized to maximal representations by
Burger-lozzi-Wienhard and
Bradlow-Garcia-Prada-Gothen-Mundet.
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m Singular points in Hom(7, G)!

m In general the analytic germ of a reductive representation
of the fundamental group of a compact Kahler manifold is
defined by a system of homogeneous quadratic equations.
(Goldman—Millson 1988, with help from Deligne)

m Deformation theory: twisted version of the formality of

Singularities the rational homotopy type of compact Kahler manifolds
(Deligne-Griffiths-Morgan-Sullivan 1975).
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The deformation groupoid

Algebraic . . .
e m Objects in the deformation theory correspond to flat
surface group

representa- connections, gad,-valued 1-forms w on X satisying the
tions .
Maurer-Cartan equations:

1
Dw + E[w,w] =0.

m Morphisms in the deformation theory correspond to
infinitesimal gauge transformations, sections 7 of gaqp:

d(n) _1q
n ad(n) e’ )
w— e w) + D(i .
() ad(n)

Singularities

m This groupoid is equivalent to the groupoid whose objects
form Hom(w, G) and the morphisms Inn(G).
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The quadratic cone
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surface group m The Zariski tangent space to the flat connections equals

representa-

tions Zl(z,gAdp)

Dw =0,

the linearization of the Maurer-Cartan equation.

® w is tangent to an analytic path <=

[w?w] =0¢€ Hz(zngdp)-

Singularities

m An explicit exponential map from the quadratic cone in
Z(%, gadp) can be constructed from Hodge theory:

w— (1 —i-aDad( )) (w)
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Complex hyperbolic surfaces

Algebraic Consider a discrete embedding 7 2% SU(1,1) and its

varieties of

sl neighborhood in Hom(w, U(n,1)).

representa-

tions m The full Zariski tangent space is Z(Z, su(n, 1)adp, )-
m Ad(U(1,1))-invariant decomposition of Lie algebras

u(n, Dadury) = <u(171)Ad69u(”—1)>@9<c1’1®@"_1>
—> Zariski tangent space decomposes:

Z(,u(1,1)adp ®u(n — 1)) @ ZHE,CH e Coh).

Singularities

m The quadratic form reduces to the cup-product
H'(Z,CLY) x HY(Z,Cl) — H*(Z,R) =R,
coefficients (Cég,l paired by

(z1,22) — Im(z1, ).
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Second order rigidity
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m Zariski normal space Hl(Z,(Cz(’)l) >~ Cle4,
m Signature of defining quadratic form equals 2e(pp).
(Werner Meyer 1971)
m Signature < Dimension = Milnor-Wood.
m Equality <= the quadratic form is definite.
m Local rigidity.
m V even e with |e| < 2g — 2, corresponding component of
Hom(m, SU(2,1)) contains discrete embeddings.
(Goldman—Kapovich—Leeb 2001)
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Another approach to positivity

Algebraic . . ) )
varieties of m When pg is a discrete embedding, the quadratic form

surface group

representa- arises from the Petersson pairing on automorphic forms.

tions

m Riemann surface X := H?/po(7) ~ T

m Hodge decomposition:

HY(X,Clt) = HYO(X,CLY) @ HOLH(X,CLY).

m Eichler-Shimura isomorphisms

Singularities

HO l(X (Cll ~ HO( ,K3/2)
Hl O(X (Cll ~ HO(X, K3/2)

carries cup-product/symplectic coefficient pairing to L2
Hermitian product on weight 3 automorphic forms.
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Happy Birthday,
Professor Hirzebruch!
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