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Two papers which changed my life: Milnor’s seminal work on flat manifolds

Two of Milnor’s papers on flat manifolds

“On the existence of a connection with curvature zero,”
(Commentarii Mathematici Helvetici 1958) began a
development of the theory of characteristic classes of flat
bundles, foliations, and bounded cohomology.

”On fundamental groups of complete affinely flat manifolds,”
(Advances in Mathematics 1977) clarified the theory of
complete affine manifolds, and set the stage for startling
examples of Margulis of 3-manifold quotients of Euclidean
3-space by free groups of affine transformations.
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Two papers which changed my life: Milnor’s seminal work on flat manifolds

Hilbert’s Problem 18: Crystallographic groups

Is there in R
n only a finite number of essentially different kinds

of groups of motions with a compact fundamental domain?

Such a group is a crystallographic group and the quotient is a
compact Euclidean orbifold.

Finitely covered by a Euclidean manifold.

Equivalently, a flat Riemannian manifold.
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Euclidean manifolds

When can a group G act on R
n with quotient Mn = R

n/G
a compact (Hausdorff) manifold?

(Bieberbach 1912): G acts by Euclidean isometries =⇒ G
finite extension of a subgroup of translations G ∩ R

n ∼= Z
n

A Euclidean isometry is an affine transformation

~x
γ

7−→ A~x + ~b

A ∈ GL(n, R),~b ∈ R
n,

where the linear part L(γ) = A is orthogonal. (A ∈ O(n))

Only finitely many topological types in each dimension.
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The Euler Characteristic

Since closed Euclidean manifold M is finitely covered by a
torus, its Euler characteristic vanishes.

This also follows from the Chern-Gauss-Bonnet theorem since
the Riemannian metric has curvature zero.
Chern’s integrand is an expression involving the curvature of
an orthogonal connection.

An affine manifold is a manifold with a distinguished atlas of
local coordinate charts mapping to R

n with locally affine
coordinate changes.

Equivalently M has flat symmetric linear connection.

Conjecture: (Chern 1940’s)
If M closed affine manifold, then χ(M) = 0.
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Benzecri’s Theorem

Benzecri (1955): A closed affine 2-manifold has χ = 0.

Milnor (1958): If ξ is an R
2-bundle over Σ2

g with flat
connection, then |Euler(ξ)| < g .

Thus the tangent bundle of Σg does not even have a flat
connection if g > 1.

Recall that an X -bundle ξ over M with a flat connection is
defined by an action of π1(Σ) on X as the quotient M̃ × X by
diagonal action of π1(M).

Smillie (1976): For every n > 1, there are closed 2n-manifolds
with flat tangent bundle with nonzero Euler characteristic.
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Milnor-Wood inequality

Wood (1972): Replace GL(2, R) by Homeo+(S1):

|Euler(ξ)| ≤ |χ(Σ)|

A representation π1(Σ)
ρ

−→ G , where G = PSL(2, R), is
maximal :⇐⇒ |(Euler(ξ))| = |χ(Σ)|.

Goldman (1980): ρ is maximal if and only if ρ embeds π1(Σ)
onto a discrete subgroup of G .

Equivalence classes of maximal representations form the Fricke
space of marked hyperbolic structures on Σ.
More generally, connected components of Hom(π1(Σ), G)/G
are the (4g − 3) preimages

Euler−1(2 − 2g), Euler−1(3 − 2g), . . . , Euler−1(2g − 2).

Ghys: Maximal representations into Homeo+(S1).
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Recent developments: surface group representations

Rigidity for maximal surface group representations, bounded
cohomology (Toledo, Burger-Iozzi-Wienhard)

Morse theory on space of connections: global topology of
representation spaces and Higgs bundles (Hitchin,
Bradlow-Garcia-Prada-Gothen, Weitsman-Wentworth-Wilkin)

Special components: dynamical properties (Anosov
representations) and geometric structures generalizing
Fricke-Teichmüller space (Hitchin, Labourie,
Guichard-Wienhard, Fock-Goncharov).
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Affine manifolds

In general an affine structure on a closed manifold may be
geodesically incomplete (unlike Riemannian manifolds):

Hopf manifold
(
R

n \ {0}
)
/〈γ〉 where R

n γ

−→ R
n is a linear

expansion.
Discrete holonomy;
Homeomorphic to Sn−1 × S1

Geodesics aimed at 0 seem to speed up (although their
acceleration is zero) and eventually fly off the manifold in
finite time.

Henceforth we restrict to complete manifolds.

M is complete ⇐⇒ M̃ ∼= R
n.
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Completeness, discretness and properness

A complete affine manifold Mn is a quotient R
n/G where G

is a discrete group of affine transformations.

For M to be a (Hausdorff) smooth manifold, G must act:

Discretely: (G ⊂ Homeo(Rn) discrete);
Freely: (No fixed points);
Properly: (Go to ∞ in G =⇒ go to ∞ in every orbit Gx).

More precisely, the map

G × X −→ X × X

(g , x) 7−→ (gx , x)

is a proper map (preimages of compacta are compact).

Discreteness does not imply properness.
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Complete affine manifolds: Auslander’s “conjecture”

L. Auslander (1960’s) claimed χ(M) = 0 for compact
complete affine manifold M ∼= R

n/Γ.

Kostant-Sullivan (1975): correct proof (Gauss-Bonnet).

Auslander’s approach:

Prove π1(M) = Γ virtually solvable.
Embed Γ in a finite extension of solvable Lie subgroup G of
Aff(Rn).
M is finitely covered by R

n/(Γ ∩ G 0).

This approach is still plausible: Auslander’s “conjecture”
known in many cases, for example in dimension ≤ 6
(Abels-Margulis-Soifer, Tomanov, ...).

Compactness is essential.
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Two papers which changed my life: Milnor’s seminal work on flat manifolds

Milnor’s Question (1977)

Can a nonabelian free group act properly, freely and discretely by
affine transformations on R

n?

Equivalently (Tits 1971): “Are there discrete groups other
than virtually polycycic groups which act properly, affinely?”

If NO, Mn finitely covered by iterated S1-fibration
Dimension 3: M3 closed =⇒ M3 finitely covered by T 2-bundle
over S1 (Fried-Goldman 1983)
Geometrizable by Euc, Nil or Sol in Thurston’s vision of
3-manifolds.
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Evidence?

“Evidence” for a negative answer to this question:

Connected Lie group G admits a proper affine action
⇐⇒ G is amenable (compact-by-solvable).

Every virtually polycyclic group admits a proper affine action.
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An idea for a counterexample...

Clearly a geometric problem: free groups act properly by
isometries on H3 hence by diffeomorphisms of E

3

These actions are not affine.

Milnor suggests:

Start with a free discrete subgroup of O(2, 1) and
add translation components to obtain a group of
affine transformations which acts freely.
However it seems difficult to decide whether the

resulting group action is properly discontinuous.
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A Schottky group

g
1

g
2

A
1
−

A
2
+

A 2
+

A2
−

Generators g1, g2 pair half-spaces A−

i −→ H2 \ A+
i .

g1, g2 freely generate discrete group.

Action proper with fundamental domain H2 \
⋃

A±

i .
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Margulis spacetimes

Early 1980’s: Margulis tried to answer Milnor’s question negatively.
Instead he proved that nonabelian free groups can act properly,
affinely on R

3.

Affine action of level 2 congruence subgroup of GL(2, Z)
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Flat Lorentz 3-manifolds and hyperbolic 2-manifolds

Suppose that Γ ⊂ Aff(R3) acts properly and is not solvable.

(Fried-Goldman 1983): Let Γ
L
−→ GL(3, R) be the linear part.

L(Γ) (conjugate to) a discrete subgroup of O(2, 1);
L injective.

Homotopy equivalence

M3 := E
2,1/Γ −→ Σ := H2/L(Γ)

where Σ complete hyperbolic surface.

Mess (1990): Σ not compact .

Γ free;

Milnor’s suggestion is the only way to construct examples
in dimension three.
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1).

H1(Σ, R3
1) consists of infinitesimal deformations of the

hyperbolic structure

Proper affine deformations correspond to infinitesimal
deformations which infinitesimally lengthen each measured
geodesic lamination.
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Conjecture: Every Margulis spacetime M3 admits a
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Corollary: (Tameness) M3 ≈ open solid handlebody.

Proved when χ(Σ) = −1 (that is, rank(π1(Σ)) = 2).
(Charette-Drumm-Goldman 2010)

Four possible topologies for Σ:

Three-holed sphere;
Two-holed cross-surface (projective plane);
One-holed Klein bottle;
One-holed torus.

The deformation space of complete affine structures on a solid
handlebody of genus 2 has 4 connected components, each one
of which is a 6-dimensional cell (with some boundary and
corners).
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Proper affine deformations of Σ when χ(Σ) = −1


