Eigenvalues and eigenvectors of square matrices can be found with the command `eig`. If \(A \) is a square matrix \(d = \text{eig}(A) \) produces a vector containing the eigenvalues of \(A \) and \([V, D] = \text{eig}(A)\) produces a diagonal matrix \(D \) of eigenvalues and a matrix \(V \) whose columns are the corresponding eigenvectors so that \(A * V = V * D \).

1. Ex. 33, p.326, Lay. Call the matrix \(A \). We will do the problem in two ways:
 (a) Do \(d = \text{eig}(A) \). Then find the eigenvectors by row reduction, i.e. do \(R = \text{rref}(A - d(1) * \text{eye}(4)) \), etc. If you have vectors \(p_1, p_2, p_3, p_4 \), to form them into a matrix \(P \), write \(P = [p_1 \ p_2 \ p_3 \ p_4] \). Then check that \(P * \text{diag}(d) * \text{inv}(P) = A \).
 (b) Do \([V, D] = \text{eig}(A)\) and check that \(A = V * D * \text{inv}(V) \). Note that \(V \) and \(P \) from part (a) may be quite different.

2. Ex. 15, p.341, Lay. Call the matrix \(B \). Do \([V, D] = \text{eig}(B)\). Then take
 \[P = [\text{real}((V(:,1)) \ \text{imag}((V(:,1))] \]
 and check that \(\text{inv}(P) * B * P \) has the correct form.

3. (a) Find the general solution of \(x' = Ax \), where
 \[A = \begin{pmatrix} 3 & -1 & -6 & 0 \\ 0 & 4 & 2 & 6 \\ 3 & -3 & -7 & -3 \\ -5 & 3 & 10 & 2 \end{pmatrix} \]
 (b) Find the solution of the initial value problem \(x' = Ax \), \(x(0) = x_0 \) where \(x_0 = (1, 2, -1, 3)^T \). Your result should involve vectors with integer entries.
 Note: To get the \(k^{th} \) column vector of a matrix \(V \) write \(V(:, k) \).

4. The solution of \(x' = Ax \), \(x(0) = (1,0)^T \) where \(A \) is the matrix of Ex. 14, p.361 is given by
 \[x_1 = \cos(2t) - \sin(2t), \quad x_2 = -4 \sin(2t) \].
 We wish to see what the trajectory of this solution looks like. So do
 \[t = 0:.01:pi; x1 = \cos(2*t) - \sin(2*t); x2 = -4 * \sin(2*t); \text{plot}(x1, x2) \]
 Use the command \textbf{print} to print out the resulting graph. Remember that you cannot save the graph in your diary.