1. Name the only two Mathematics Departments in the USA with all three of the following:
 i. A Ph.D Graduate with a Nobel prize.
 ii. An undergraduate Math major who went on to win a Fields Medal.
 iii. A Fields Medalist on the faculty.

2. Let
 \[A = \begin{pmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{pmatrix} \]

 is \((1, -2, 1)^T \) an eigenvector of \(A \)? If so, find the eigenvalue.

3. Let
 \[B = \begin{pmatrix} 2 & 3 & 3 \\ 12 & 5 & 6 \\ -27 & -15 & -16 \end{pmatrix} \]

 Given that \((3 + 2i, 5 - i, -13)^T \) is an eigenvector of \(B \) corresponding to the eigenvalue \(\lambda = -4 + 3i \), find another eigenvalue of \(B \) and a corresponding eigenvector.

4. Let \(A \) be a \(2 \times 2 \) matrix whose eigenvalues are \(\lambda_1 = -1 \) and \(\lambda_2 = 2 \) with corresponding eigenvectors \(v_1 = (1, 1)^T \) and \(v_2 = (2, 3)^T \). Solve the initial value problem \(x' = Ax, \ x(0) = (5, 2)^T \).

5. Let \(A \) be as in problem 4. What is \(A \)?

6. Let \(u = (1, 1, 1, 1)^T, \ v = (1, 7, 1, 7)^T, \ W = \text{Span}\{u, v\} \).
 (a) Calculate \(||v||, \ \text{dist}(u, v) \), the projection of \(v \) onto \(u \) and the unit vector in the direction of \(u \).
 (b) Apply the Gram-Schmidt process to \(\{u, v\} \) to obtain an orthonormal basis for \(W \).
 (c) Let \(y = (3, 2, -1, 2)^T \). Find \(z \), the vector in \(W \) which is closest to \(y \).