
Geometric Analysis: Lectures 1-4

1 Basics of Differentiable Manifolds

A differentiable manifold M is a topological space which is locally homeomorphic to an open subset of
Rn and whose transition functions are smooth maps between these open subsets. Using the transition
functions we can give coordinates around a point in the manifold. These coordinates will usually be
denoted {x1(·), x2(·), . . . , xn(·)} so that x(p) = (0, . . . , 0).

The tangent space at each point p ∈M , denoted TpM , is an n-dimensional vector space spanned by the
vectors { ∂

∂x1
, . . . , ∂

∂xn
}. The inner product on this tangent space is given by the metric g at the point p.

For any vectors X,Y ∈ TpM the inner product is denoted g(X,Y, p). For any point q in a neighborhood of
p the metric can be written as a matrix with coefficients gij(q) = g( ∂

∂xi
, ∂
∂xj

, q). We require the functions

gij to vary smoothly in the coordinate neighborhood on which they’re defined.

The metric can be used to measure the length of differentiable curves γ : [a, b]→M with velocity vector
fields γ̇(t) ∈ Tγ(t)M

L(γ) =

∫ b

a

√
g(γ̇(t), γ̇(t), γ(t)) dt

A natural question to ask is what curves minimize length between fixed endpoints γ(a), γ(b) in (M, g).

2 The Euler-Lagrange Equation of the Length Functional

For a given differentiable manifold the tangent bundle TM is a manifold whose points are (p,X) where
X ∈ TpM . If M is n-dimensional TM is 2n-dimensional, accounting for both the dimesion of M and
TpM . A basic example is for the circle M = S1 which has TpM = R at every point, and TM = S1 × R.

We define a Lagrangian on M to be a smooth function on the tangent bundle TM .

Thus L(γ) is a Lagrangian as it only depends on the points (γ(t), γ̇(t)) ∈ TM . We now seek to find the
critical points of the length functional L by computing its Euler-Lagrange Equation.

Let γε : [a, b]→ M be a one-parameter family of curves with fixed endpoints γε(a) = γ(a), γε(b) = γ(b),
γ0 = γ, and γε(t) C

∞ in ε and t.

If γ is a critical point of the length function L then for any one-parameter family γε,
d
dt

∣∣
ε=0

L(γε) = 0.

To compute the above derivative and derive the Euler-Lagrange equation we first define coordinates
{x1, . . . , xn} on an open neighborhood Up ⊂M of a point p and coordinates {p1, . . . , pn} on the tangent
space so that for an arbitrary Lagrangian

∫
F (γ, γ̇) we can compute

d

dε

∣∣∣∣
ε=0

∫
F (γε, γ̇ε) dt =

∫ b

a

(∑
i

∂F

∂xi

∂γiε
∂ε

∣∣∣∣
ε=0

+
∑
i

∂F

∂pi

∂2γiε
∂ε∂t

∣∣∣∣
ε=0

)
dt

After integrating by parts
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=

∫ b

a

∑
i

∂γiε
∂ε

∣∣∣∣
ε=0

(
∂F

∂xi
− d

dt

∂F

∂pi

)
dt

Thus d
dε

∣∣
ε=0

F (γε) = 0 imples

∑
i

∂F

∂xi
− d

dt

∂F

∂pi
= 0

which is the Euler-Lagrange equation of
∫
F (γ̇, γ). Now we compute the Euler-Lagrange equation for the

specific case of the energy functional E which has the same critical points as the length functional L.

E(γ, γ̇) = gklγ̇
k(t)γ̇l(t)

suppressing the summation over repeated indices. The Euler-Lagrange equation becomes:

∑
i

∂gkl
∂xi

γ̇kγ̇l =
d

dt

(∑
i

gklγ̇
kδli +

∑
i

gklγ̇
lδki

)

=
d

dt

(∑
i

gilγ̇
l +
∑
i

gkiγ̇
k

)

=
∑
i

gilγ̈
l + gkiγ̈

k +
∂gil
∂xm

γ̇mγ̇l +
∂gki
∂xm

γ̇mγ̇k

By using the symmetry that gij = gji, reindexing and combining the γ̈ terms, and rewriting
∂gij
∂xk

= gij,k
we get

2
∑

gilγ̈
l =

∑
(gmk,i − gim,k − gik,m) γ̇kγ̇m

Thus a curve γ is a critical point of the energy functional E, and thus a critical point of the length
functional L, if it is a solution to this differential equation. Next we will show that this is the same
geodesic equation that arises in differential geometry.

3 Geodesics from a Riemannian Geometry Viewpoint

Let (M, g) be a Riemannian manifold. The geodesic equation can also be derived by considering what
it means for a curve to have zero acceleration in a manifold. The vector field γ̇ is a well defined first
derivative for a curve γ, but in order to have a well defined second derivative we must define a connection
on M which will allow us to differentiate one vector field along another. An affine connection on M is a
map ∇ : TM × TM → TM satisfying two conditions.

1)∇aX+bY Z = a∇XZ + b∇Y Z
2)∇X(aY ) = a∇XY + da(X)Y = a∇XY +X(a)Y

for X,Y, Z sections of TM and a, b smooth functions on M

The Levi-Civita connection or Riemannian connection is an affine connection with the added properties
of being symmetric and compatible with the metric.
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3)∇XY −∇YX = [X,Y ]

4)Xg(X,Y ) = g(∇XY,X) + g(Y,∇XZ)

With the Levi-Civita connection we can define a vector field X to be parallel along a curve γ if it satisfies
∇γ̇(t)X(t) = 0. Because of the compatibility of ∇ with the metric g, the inner product g(X(t), Y (t)) of
two vector fields which are parallel along γ is constant.

In order to facilitate computations with the connection we define the action of ∇ on the basis for the
tangent space in local coordinates { ∂

∂x1
, . . . , ∂

∂xn
} which we will furthermore denote {∂1, . . . , ∂n}.

∇∂i∂j = Γkij∂k

Γijk = gklΓ
l
ij

Γkij are called Christoffel symbols of the 2nd kind and Γijk are called Christoffel symbols of the 1st kind.

Lemma 3.1. The Levi-Civita connection is unique.

Proof. We will use the metric compatibility and apply this to basis vector fields.

∂kg(∂i, ∂j) = gij,k

= g(∇∂k∂i, ∂j) + g(∂i,∇∂k∂j)
= g(Γlki∂l, ∂j) + g(∂i,Γ

l
kj∂l)

= Γlkiglj + Γlkjgil

= Γkij + Γkji

By the symmetry of the connection

0 = [∂i, ∂j ]

= ∇∂i , ∂j −∇∂j∂i
= (Γkij − Γkji)∂k

=⇒ Γkij = Γkji
and summing covariant derivatives of the metric

gij,k + gjk,i − gki,j = Γkij + Γkji + Γijk + Γikj − Γjki − Γjik

= 2Γijk

So the Christoffel symbols are determined by the metric and the connection is unique.

Now we define geodesics from a Riemannian geometry viewpoint as curves γ : [a, b] → M which have
zero acceleration, or equivalently, parallel velocity vector fields γ̇. Thus, the geodesic equation becomes
∇γ̇ γ̇. In local coordinates, written in terms of the Christoffel symbols of the Riemmanian connection this
becomes:

γ(t) = (x1(t), . . . , xn(t))

γ̇(t) = (ẋ1(t), . . . , ẋn(t))
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∇γ̇ γ̇ = ∇ẋi∂i ẋ
j∂j

= ẋiẋjΓkij∂k + ẍk∂k

= (ẋiẋjΓkij + ẍk)∂k = 0

So the geodesic equation is

γ̇iγ̇jΓkij + γ̈k = 0

To show this is the same as the geodesic equation which we arrived at by variational methods

0 = 2γ̇iγ̇jΓkij + 2γ̈k

= 2glkγ̈
k + 2glkΓkij γ̇

iγ̇j

= 2glkγ̈
k + 2Γijlγ̇

iγ̇l

= 2glkγ̈
k − (gli,j − gij,l − gjl,i)γ̇iγ̇j

which agrees with our variational method up to a change of indices.

4 Jacobi’s Theorem

Next we seek to know when a critical point of the length functional is in fact a minimizer. All geodesics
exist and are length minimizing in a small ball around any point. We describe these geodesics by the
exponential map. Let γ be a geodesic in M such that γ(0) = p, γ̇(0) = X. Then γ has constant speed√
g(X,X). The exponential map expp : TpM →M is defined:

expp(X) = γ(1) expp(tX) = γ(t)

To find when a geodesic is length minimizing, we must understand the critical points of expp, so we need
to know when dexpp has a nontrivial kernel. Thus we define a point q = expp(tA) of a geodesic γ to be
conjugate to p along γ if it is a critical value of expp. With this definition we can state the main theorem
regarding length minimizing geodesics.

Theorem 4.1. If γ is a minimizing geodesic then none of its interior points are conjugate points.

Before we prove this theorem we must relate conjugate points to variations of a geodesic. Let γε(t)
be a variation such that γ0(t) = γ(t), γε(0) = γ(0), and γε(1) = γ(1). Our strategy is to assume the
existence of a conjugate point along γ and show that this implies the existence of a variation γε such that
∂2

∂ε2L(γε) < 0. Such a variation would show γ to in fact be a locally maximizing geodesic, thus proving
the theorem.

∂

∂ε
L(γε) =

∫ 1

0

1

2|γ̇|
∂

∂ε
〈γ̇, γ̇〉 dt

=

∫ 1

0

1

2|γ̇|
2
〈
∇ ∂γ

∂ε
γ̇, γ̇

〉
dt

∂2

∂ε2
L(γε) =

∫ 1

0

−1

|γ̇|2
1

|γ̇|

〈
∇ ∂γ

∂ε
γ̇, γ̇

〉2
+

1

|γ̇|

[〈
∇ ∂γ

∂ε
∇ ∂γ

∂ε
γ̇, γ̇

〉
+
∣∣∣∇ ∂γ

∂ε
γ̇
∣∣∣2] dt
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Now call ∂γ
∂ε

∣∣∣
ε=0

= γ′ = X so that X(0) = 0 and X(1) = 0.

Since ∂
∂ε and ∂

∂t are commuting vector fields in Rn their pushforwards commute as
[
γ∗

∂
∂ε , γ∗

∂
∂t

]
=

γ∗
[
∂
∂ε ,

∂
∂t

]
= 0.

This implies 0 = [γ̇, X] = ∇γ̇X −∇X γ̇.

Thus, the first term in the integral of ∂2

∂ε2

∣∣∣
ε=0

L(γε) is

−1

|γ̇|3
〈∇γ̇X, γ̇〉2 =

−1

|γ̇|3

(
d

dt
〈X, γ̇〉

)2

To rewrite the second term of the integral we define the Riemannian curvature tensor as a map R :
TM × TM → TM defined as

R(X,Y )Z =
(
∇X∇Y −∇Y∇X −∇[X,Y ]

)
Z

which we can rewrite as a map R : TM × TM × TM × TM → R defined as

R(X,Y, Z,W ) = g(R(X,Y )Z,W )

Now the second term of the integral can be rewritten as

1

|γ̇|

[
〈∇X∇γ̇X, γ̇〉+ |∇X γ̇|2

]
=

1

|γ̇|

[
−〈∇γ̇∇XX, γ̇〉+ 〈R(X, γ̇)X, γ̇〉+ |∇X γ̇|2

]
= − d

dt
〈∇XX, γ̇〉+ 〈R(X, γ̇)X, γ̇〉+ |∇X γ̇|2

And if we rescale γ to have constant unit speed the second variational formula for the length functional
becomes

∂2

∂ε2

∣∣∣∣
ε=0

L(γε) =

∫ b

a

−
(
d

dt
〈X, γ̇〉

)2

+ 〈R(X, γ̇), X, γ̇〉+ |∇X γ̇|2 dt

Now we consider normal fields X such that 〈X(t), γ̇(t)〉 = 0 for any t. If X is normal along γ then the
second variational formula becomes

Iγ(X) =
∂2

∂ε2

∣∣∣∣
ε=0

L(γε) =

∫ b

a

R(X, γ̇,X, γ̇) + |∇X γ̇|2 dt

Now we will seek minimizers of I and prove they have negative values when γ contains conjugate points.
We consider Iγ over all vector fields along γ, which are sections of γ∗TM , vanishing at 0 and 1. γ∗TM '
[0, 1] × Rn and we can make this explicit by choosing a frame for TpM which varies along γ. First
choose {E1, . . . , En}, an orthonormal frame for Tγ(0)M and extend Ei(t) ∈ Tγ(t)M by the solution to
∇γ̇Ei(t) = 0, Ei(0) = Ei. It can be shown that Ei(t) is an orthonormal frame at each point of γ.

Decomposing a vector field X along γ as X =
∑

qi(t)Ei(t), and γ̇(t) =
∑

aiEi(t). Then ∇γ̇X =∑
q̇2i (t)Ei(t).

Now the second variational formula for X along γ is

IγX =

∫ b

a

∑
q̇2i +Rijkl qiajqkal dt
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where Rijkl = R(Ei, Ej , Ek, El).

Using the Euler-Lagrange equation for functionals of this type that we derived previously we find that
the Euler-Lagrange equation for I is

2q̈i = −Rijkl ajqkal −Rmjil qmajal

And using that
∑

q̈iEi = ∇γ̇∇γ̇X we get the Jacobi Equation

∇γ̇∇γ̇X +R(γ̇, X)γ̇ = 0

When X satisfies this equation it is called a Jacobi field. We seek to find a normal Jacobi field X with
I(X) < 0 along a geodesic γ with a conjugate point, which will provide the contradiction needed to prove
Theorem 4.1. But first we must show that any Jacobi field X with X(0) = 0 and X(1) = 0 can be
obtained from a variation so that showing I(X) < 0 is sufficient for proving the theorem which concerns
variations rather than Jacobi fields.

Proposition 4.2. There is a bijection between variations γε(t) which are composed of geodesics and have
a fixed start point γ(0) and Jacobi fields X(t) with X(0) = 0.

Proof. First we’ll show that a variation of geodesics with a fixed start point induces a Jacobi field X with
X(0) = 0. Such a variation can be defined as γε(t) = expptA(ε) with A(ε) ∈ TpM and A(0) = γ̇(0). The
induced Jacobi field is X(t) = γ′ε(t) = dexpp|tA(ε) (tA′(0)). Clearly X(0) = 0.

Now we’ll show that γ′ε(t) is a Jacobi field.

∇γ̇∇γ̇γ′ +R(γ′, γ̇)γ̇ = 0

⇐⇒ ∇γ̇∇γ′ γ̇ +R(γ′, γ̇)γ̇ = 0

⇐⇒ ∇γ′∇γ̇ γ̇ +R(γ̇, γ′)γ̇ +R(γ′, γ̇)γ̇ = 0

⇐⇒ ∇γ′∇γ̇ γ̇ = 0

But the last line being equal to 0 is exactly the geodesic equation, so γ′ε is a Jacobi field.

Next we’ll show that a Jacobi field X with X(0) = 0 gives rise to a variation of geodesics with a
fixed start point. But first we’ll give an argument for why for each variation with fixed start point
φ(t, ε) = γε(t) = expp(tA(ε)) which gives rise to a variational field X(t) = ∂φ

∂ε (t, 0) has its covariant
derivative ∇γ̇X(0) = A′(0). This relies on the fact that

∇γ̇X(t) = ∇γ̇
(
∂φ

∂ε

∣∣∣∣
ε=0

)
= (∇γ′ γ̇ε(t))|ε=0

Where in the last equality I used the relation ∇γ̇ ∂φ∂ε = ∇γ′
∂φ
∂t between partial and covariant derivatives

on the surface which is the image of φ. To see why this relation is true choose a local coordinate x for
M near a point on the image of φ and compute

∇γ̇
(
∂φ

∂ε

)
= ∇γ̇

(
∂xi

∂ε

∂

∂xi

)
=
∂2xi

∂t∂ε

∂

∂xi
+
∂xi

∂ε
∇ ∂xj

∂t
∂

∂xj

∂

∂xi

=
∂2xi

∂t∂ε

∂

∂xi
+
∂xi

∂ε

∂xj

∂t
∇ ∂

∂xj

∂

∂xi

And the symmetry of the connection gives ∇ ∂

∂xj

∂
∂xi = ∇ ∂

∂xi

∂
∂xj so a computation of ∇γ′

∂φ
∂t gives the

same result.
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Thus ∇γ̇X(t) = (∇γ′ γ̇ε(t))|ε=0 and ∇γ̇X(0) = (∇γ′A(ε))|ε=0. But since at t = 0 the the curve ε 7→ γε(0)
is constant, the covariant derivative is just a partial derivative with respect to ε and ∇γ̇X(0) = A′(0).

Now that we’ve established that ∇γ̇X(0) = A′(0), we continue the proof by considering an arbitrary
Jacobi field with initial value 0.

Given such an X let B = ∇γ̇X(0). Now define A(ε) = γ̇(0) + εB and consider the variation γε(t) =
expptA(ε). The induced Jacobi field is Y (t) = γ′ε(t) = dexpp|tA(ε) (tB). But Y (0) = X(0) = 0 and

∇γ̇Y (0) = B = ∇γ̇X(0) by the argument given above, so by the uniqueness of ordinary differential
equations X(t) = Y (t) and X(t) is induced by a variation of geodesics with a fixed start point.

Before proving the existence of a Jacobi field with I(X) < 0, we will first prove a helpful proposition.

Proposition 4.3. If X is a Jacobi field such that 〈X(0), γ̇(0)〉 = 〈X(1), γ̇(1)〉 = 0 then X is a normal
Jacobi field, and if furthermore X(0) = X(1) = 0 then I(X) = 0.

Proof. To show that X is normal we must show 〈γ̇, X〉 = 0. First we note

d

dt
〈γ̇, X〉 = 〈γ̇,∇γ̇X〉

And taking a further derivative

d2

dt2
〈γ̇,∇γ̇X〉 = 〈γ̇,∇γ̇∇γ̇X〉

= −〈γ̇, R(X, γ̇)γ̇〉
= −R(γ̇, γ̇, X, γ̇) = 0

So 〈γ̇, X〉 = at+ b for a, b ∈ R and by using the conditions on the endpoints we can show that 〈γ̇, X〉 = 0,
so X is normal. Thus, the equation for I(γ) reduces to:

I(X) =

∫ 1

0

|∇γ̇X|2 −R(X, γ̇,X, γ̇) dt

=

∫ 1

0

〈∇γ̇X,∇γ̇X〉+ 〈X,∇γ̇∇γ̇X〉 dt

=

∫ 1

0

d

dt
〈X,∇γ̇X〉 dt

= 〈X,∇γ̇X〉|10 = 0

as the conditions on the endpoints are the same.

Now we have all of the tools necessary to prove Theorem 4.1 which states that if γ is a minimizing
geodesic then none of its interior points are conjugate points.

Proof. We will prove the theorem by contradiction, assuming there exists a conjugate point at γ(t0) and
showing that γ cannot be length minimizing. To this end we will show there exists a normal Jacobi field
Y along γ, which by Proposition 4.2 is the variational field of some variation γε(t), such that the second
variation of Y , I(Y ) < 0 which would imply γ is locally length maximizing.

First we show the existence of a normal Jacobi field such that X(0) = 0 and X(t0) = 0, where
γ(t0) is the conjugate point to γ(0). Since γ(t0) is conjugate, there exists A(ε) ∈ TpM such that

A′(0) ∈ ker
(
dexpp|t0A

)
, and defining X(t) = dexpp|tA(ε) (tA′(t)) gives the desired Jacobi field. And by

Proposition 4.3 it is normal on [0, t0] and has I(X) = 0 on that interval.

Around every point in a Riemannian manifold the exponential map is a diffeomorphism from a small ball
in the tangent space to a small normal neighborhood in the manifold. Thus there exists δ > 0 such that
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the exponential map is a diffeomorphism on B(0, δ) ⊂ Tγ(t0)M . Thus expγ(t0) cannot have any critical
points in the interval, so none of the points on γ|[t0−δ,t0+δ] are conjugate to γ(t0 − δ). Now we seek to

prove the existence of a Jacobi field Z(t) on [t0−δ, to+δ] such that Z(t0−δ) = X(t0δ) and Z(t0 +δ) = 0.

We first note that since the Jacobi equation is an system of n second-order ordinary differential equations,
its solution set is 2n-dimensional. Next, we consider the linear map α : X 7→ (X(t0 − δ), X(t0 + δ)) from
the 2n-dimensional space of Jacobi fields to the 2n-dimensional space Tγ(t0−δ)M ⊕ Tγ(t0+δ)M . It is
injective as it is a homomorphism of vector spaces and the only Jacobi field which has both endpoints
0 is the unique solution X(t) = 0 of the Jacobi equation with those initial conditions. But since the
dimension of the domain and codomain are both 2n it is surjective as well. Thus there exists a Jacobi
field Z with the perscribed endpoints. By Proposition 4.3 Z is normal.

Before we define our final Jacobi field which will satisfy I(Y ) < 0, we will first show that the Jacobi field
Z defined above is minimal in the sense that I(Z) < I(W ) where W is any other piecewise smooth field
along γ. Since Z is normal, it can be written as an R-linear combination of of {W1, . . . ,Wn−1}, a basis
for the subspace of normal Jacobi fields. A computation shows that for a smooth field W = f iWi, where
now f i are smooth functions, I can be written.

I(W ) =

∫ 1

0

∣∣∣ḟ iWi

∣∣∣2 dt+ f i(1)f j(1) 〈∇γ̇Wi,Wj〉|t=1

And since Z is normal, the f is are constant, and the formula reduces to.

I(Z) = f i(1)f j(1) 〈∇γ̇Wi,Wj〉|t=t0+δ
Thus for any smooth field W which agrees with Z on t0 − δ and t0 + δ we have

I(W )− I(Z) =

∫ t0+δ

t0−δ

∣∣∣ḟ iWi

∣∣∣2 dt ≥ 0

And so Z is strictly minimal amongst smooth fields with the same endpoints.

Now define the Jacobi field Y on all of γ by

Y (t) =


X(t) t ∈ [0, t0 − δ]
Z(t) t ∈ [t0 − δ, t0 + δ]

0 t ∈ [t0 + δ, 1]

And we compute

I10 (Y ) = It0+δ0 (Y ) = It0−δ0 (X) + It0+δt0−δ (Z)

= It00 (X)− It0t0−δ(X) + It0+δt0δ
(Z)

= It0+δt0−δ (Z)− It0t0−δ

And Z is minimal by the argument above, so for a field defined

W (t) =

{
X(t) t ∈ [t0 − δ, t0]

0 t ∈ [t0, t0 + δ]

W and Z have the same endpoints, so I(Z) < I(W ), and since It0t0−δ,t0(X) = It0+δt0−δ (W ), it follows that

I10 (Y ) < 0, contradicting the fact that γ was length minimizing.
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Geometric Analysis Homework 1

The first four exercises are taken from Geometry VI: Riemannian Geometry by M.M. Postnikov.

Exercise 11.3 Prove that parallel translation with respect to a Riemannian connection is an isometric
mapping of tangent spaces.

Proof. Let X(t) and Y (t) be parallel vector fields along γ so that ∇γ̇(t)X(t) = ∇γ̇(t)Y (t) = 0. To prove
parallel translation is an isometry we must show 〈X(t), Y (t)〉 is constant.

d

dt
〈X(t), Y (t)〉 =

〈
∇γ̇(t)X(t), Y (t)

〉
+
〈
X(t),∇γ̇(t)Y (t)

〉
= 0

Thus parallel translation is an isometry.

Exercise 11.4 Prove that the matrix for the Lagrangian L on TM with local coordinates
(
q1, . . . , qn, q̇1, . . . , q̇n

)
given by [

∂2L

∂q̇i∂q̇j

]
does not depend on the choice of local coordinates.

Proof. Let φ be a change of coordinates such that φ(q) = p. This induces a change of coordinates on
the tangent space by ṗ = (dφ)−1q̇ and more specifically ṗi = (dφ−1)jiq̇j . Thus ∂ṗi

∂q̇j = (dφ−1)ji and
∂2ṗi
∂q̇j∂q̇k

= 0. Under the change of coordinates L changes as

L(q, q̇) = L(φ−1(p), dφ(ṗ)) = G(p, ṗ)

And the partial derivatives of L change as

∂L

∂q̇i
=
∂G

∂ṗk

∂ṗk
∂q̇i

1



∂2L

∂q̇i∂q̇j
=

∂

∂q̇j

(
∂G

∂ṗk

∂ṗk
∂q̇i

)
=
∂G

∂ṗk

∂2ṗk
∂q̇i∂q̇j

+
∂2G

∂ṗk∂ṗl

∂ṗl
∂q̇j

∂ṗk
∂q̇i

=
∂2G

∂ṗk∂ṗl

∂ṗl
∂q̇j

∂ṗk
∂q̇i

=
∂2L

∂ṗk∂ṗl

(
∂q̇j
∂ṗi

∂q̇i
∂ṗj

)(
∂ṗl
∂q̇j

∂ṗk
∂q̇i

)
=

∂2L

∂ṗk∂ṗl
δliδ

k
j

=
∂2L

∂ṗj∂ṗi

So
[

∂2L
∂q̇i∂q̇j

]
does not depend on the choice of local coordinates.

Exercise 12.2 Prove that a geodesic remains a geodesic under a reparameterization iff this reparameter-
ization is linear (has the form t 7→ at+ b, where a 6= 0).

Proof. Consider a reparameterization s = g(t) for the geodesic γ(s). Now put the reparameterized curve
γ(g(t)) into the geodesic equation.

d2

dt2
γi(g(t)) + Γikj(γ(g(t)))

d

dt
γj(t)

d

dt
γk(t)

= γ̈i(g(t))(g′(t))2 + γ̇i(g(t))g′′(t) + Γikj(γ(g(t))γ̇j(g(t))γ̇k(g(t))(g′(t))2

= γ̇i(s)g′′(t) +
[
γ̈i(s) + Γikj(γ(s)γ̇j(s)γ̇k(s)

]
g′′(t)

= γ̇i(s)g′′(t)

Where the last equality is because γ(s) is a geodesic. Since γ̇i(s) 6= 0, γ(g(t)) is a geodesic iff g′′(t) = 0
iff g(t) = at+ b for a, b ∈ R and a 6= 0.

Exercise 27.1 Show that for any piecewise smooth field X on the geodesic γ, the inequality

I10 (X⊥) ≤ I10 (X)

holds, where X⊥ is the normal component of the field X (i.e., X(t) − X⊥(t) is collinear to the vector
γ̇(t) for every t).

Proof. Assuming γ : [a, b] → M is a unit speedgeodesic, let {γ̇(a) = A1, A2, . . . , An} be an orthonormal
basis for Tγ(a)M . Parallel transporting each of these vectors along γ based on the unique solution to the
differential equation ∇γ̇(t)Xi(t) = 0, Xi(0) = Ai yields an orthonormal frame along γ with X1(t) = γ̇(t).

Thus, any smooth vector field X along γ can be written as X =

n∑
i=1

f iXi for f i smooth functions. Then

X⊥ =

n∑
i=2

f iXi as X⊥ has no component parallel to X1 = γ̇. On smooth vector fields I(x) is given by

∫ b

a

[
〈∇γ̇X,∇γ̇X〉 −R(X, γ̇,X, γ̇)− 〈∇γ̇X, γ̇〉2

]
dt

Examining the first term in the integral we see

2



〈∇γ̇X,∇γ̇X〉 =
〈
∇γ̇f iXi,∇γ̇f jXj

〉
=
〈
ḟ iXi + f i∇γ̇Xi, ḟ

jXj + f j∇γ̇Xj

〉
=
∑∣∣∣ḟ i∣∣∣2

And comparing X to X⊥ we see

∫ b

a

〈∇γ̇X,∇γ̇X〉 dt−
∫ b

a

〈
∇γ̇X⊥,∇γ̇X⊥

〉
dt =

∫ b

a

∣∣∣ḟ1∣∣∣2 dt
Examining the second term in the integral, since R(X,Y, Z, Z) = 0 by the symmetries of the curva-
ture tensor, it follows that R(f iXi, γ̇, f

1X1, γ̇) = R(f iXi, γ̇, f
1X1, X1) = 0. Thus R(X, γ̇,X, γ̇) =

R(X⊥, γ̇, X⊥, γ̇) and their difference contributes nothing to the integral.

Examining the third term in the integral we see

〈∇γ̇X, γ̇〉2 =
〈
f iXi, X1

〉2
=
∣∣f1∣∣2

And comparing X to X⊥ we see

−
∫ b

a

〈∇γ̇X, γ̇〉2 dt−

(
−
∫ b

a

〈
∇γ̇X⊥, γ̇

〉2
dt

)
= −

∣∣f1∣∣2
So together

I(X)− I(X⊥) =

∫ b

a

∣∣f1∣∣2 − ∣∣f1∣∣2 dt = 0

Exercise 5 Prove that the Jacobi field Z from the proof of Theorem 4.1 from the notes on Lectures 1-4
is normal.

Proof. The Jacobi field Z(t), which is defined on [t0 − δ, t0 + δ] has the property that Z(t0 − δ) =
X(t0 − δ) where X is a normal Jacobi field on [0, t0], and Z(t0 + δ) = 0. Thus 〈Z(t0 − δ), γ̇(t0 − δ)〉 =
〈X(t0 − δ), γ̇(t0 − δ)〉 = 0 as X was already shown to be normal. Likewise 〈Z(t0 + δ), γ̇(t0 + δ)〉 =
〈0, γ̇(t0 + δ)〉 = 0.

By Proposition 4.3 Z must be minimal.

Exercise 6 Prove that the normal Jacobi field Z from the proof of Theorem 4.1 from the note on Lectures
1-4 is minimal.

Before beginning the proof of the minimality of Z I will state and prove a lemma.

Lemma 0.1. For any smooth normal vector field W = f iWi written in terms of an orthonormal basis
{W1, . . . ,Wn−1} for the space of normal Jacobi fields with a prescribed final value. If W (1) = 0 we can
write I(W ) as

I(W ) =

∫ 1

0

∣∣∣ḟ iWi

∣∣∣2 dt− f i(0)f j(0) 〈∇γ̇Wi,Wj〉|t=0

3



Proof. The formula for I of a normal vector field is as shown in the notes

I(W ) =

∫ 1

0

[〈∇γ̇W,∇γ̇W 〉 −R(W, γ̇,W, γ̇)] dt

Computing the first term

〈∇γ̇W,∇γ̇W 〉 =
〈
ḟ iWi + f i∇γ̇Wi, ḟ

jWj + f j∇γ̇Wj

〉
=
∣∣∣ḟ iWi

∣∣∣2 + 2ḟ if j 〈Wi,∇γ̇Wj〉+ f if j 〈∇γ̇Wi,∇γ̇ ,Wj〉

Computing the second term

R(W, γ̇,W γ̇) = f if j 〈R(Wi, γ̇)γ̇,Wj〉
= −f if j 〈∇γ̇∇γ̇Wi,Wj〉

Where the last equality is because of the Jacobi equation applied to Wi. Noting

d

dt
〈∇γ̇Wi,Wj〉 = 〈∇γ̇∇γ̇Wi,Wj〉+ 〈∇γ̇Wi,∇γ̇Wj〉

We see that

〈∇γ̇W,∇γ̇W 〉 −R(W, γ̇,W, γ̇) =
∣∣∣ḟ iWi

∣∣∣2 + 2ḟ if j 〈Wi,∇γ̇Wj〉+ f if j
d

dt
〈∇γ̇Wi,Wj〉

Also we have

d

dt

〈
f i∇γ̇Wi, f

jWj

〉
= ḟ if j 〈∇γ̇Wi,Wj〉+ f j ḟ i 〈∇γ̇Wj ,Wi〉+ f if j

d

dt
〈∇γ̇Wi,Wj〉

So we see that,

〈∇γ̇W,∇γ̇W 〉 −R(W, γ̇,W, γ̇) =
∣∣∣ḟ iWi

∣∣∣2 + ḟ if j [〈Wi,∇γ̇Wj〉+ 〈∇γ̇Wi,Wj〉] +
d

dt

〈
f i∇γ̇Wi, f

jWj

〉
Now to show that the middle term of the right hand side is zero

d

dt
〈∇γ̇Wi,Wj〉 = 〈∇γ̇∇γ̇Wi,Wj〉+ 〈∇γ̇Wi,∇γ̇Wj〉

= 〈∇γ̇Wi,∇γ̇Wj〉 −R(Wj , γ̇,Wi, γ̇)

And likewise

d

dt
〈Wi,∇γ̇Wj〉 = 〈∇γ̇Wi,∇γ̇Wj〉 −R(Wj , γ̇,Wi, γ̇)

And examining the middle term of the previous expansion

d

dt
[〈Wi,∇γ̇Wj〉 − 〈∇γ̇Wi,Wj〉] = 0
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So it is equal to a constant, but since Wi(1) = Wj(1) = 0 the whole term is equal to 0. And we can
simplify

〈∇γ̇W,∇γ̇W 〉 −R(W, γ̇,W γ̇) =
∣∣∣ḟ iWi

∣∣∣2 +
d

dt

〈
f i∇γ̇Wi, f

jWj

〉
And integrating from 0 to 1 gives the desired result

Now we return to the proof of the minimality of Z.

Proof. Z is in particular a smooth normal field, so it can be written in terms of an orthonormal basis
{W1, . . . ,Wn−1} for the space of normal Jacobi fields with perscribed initial value Z(t0− δ) = X(t0− δ).
Let Z(t) = f iWi. Since Z is a Jacobi field, it is a solution of the Jacobi equation. Evaluating the Jacobi
equation for f iWi and using the fact that each Wi satisfies the Jacobi equation gives

0 = ∇γ̇∇γ̇(f iWi) +R(γ̇, f iWi)γ̇ = ∇γ̇
(
ḟ iWi + f i∇γ̇Wi

)
+ f iR(γ̇,Wi)γ̇

= f̈ iWi + 2ḟ i∇γ̇Wi + f i∇γ̇∇γ̇Wi + f iR(γ̇,Wi)γ̇

= f̈ iWi + 2ḟ i∇γ̇Wi

This implies that ḟ i = 0 ∀i. If not, then ∇γ̇Wi would be some multiple of Wi which would contradict
the fact that Z(t0 + δ) = 0. Thus f i is a constant for each i.

By the lemma, I(W ) can be written

I(W ) =

∫ 1

0

∣∣∣ḟ iWi

∣∣∣2 dt− f i(0)f j(0) 〈∇γ̇Wi,Wj〉|t=0

And for Z = f iWi where the coefficients are constant the formula reduces to

I(Z) = −f i(t0 − δ)f j(t0 − δ) 〈∇γ̇Wi,Wj〉|t=t0−δ

And for any smooth field W = giWi which agrees with Z on t0 − δ and t0 + δ we have

I(W )− I(Z) =

∫ t0+δ

t0−δ

∣∣ġiWi

∣∣2 dt ≥ 0

So Z is strictly minimal amongst smooth fields with the same endpoints.
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