1 Basics of Differentiable Manifolds

A differentiable manifold M is a topological space which is locally homeomorphic to an open subset of \mathbb{R}^n and whose transition functions are smooth maps between these open subsets. Using the transition functions we can give coordinates around a point in the manifold. These coordinates will usually be denoted $\{x_1(\cdot), x_2(\cdot), \ldots, x_n(\cdot)\}$ so that $x(p) = (0, \ldots, 0)$.

The tangent space at each point $p \in M$, denoted T_pM , is an n-dimensional vector space spanned by the vectors $\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\}$. The inner product on this tangent space is given by the metric g at the point p. For any vectors $X, Y \in T_pM$ the inner product is denoted g(X, Y, p). For any point q in a neighborhood of p the metric can be written as a matrix with coefficients $g_{ij}(q) = g(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}, q)$. We require the functions g_{ij} to vary smoothly in the coordinate neighborhood on which they're defined.

The metric can be used to measure the length of differentiable curves $\gamma : [a, b] \to M$ with velocity vector fields $\dot{\gamma}(t) \in T_{\gamma(t)}M$

$$L(\gamma) = \int_{a}^{b} \sqrt{g(\dot{\gamma}(t), \dot{\gamma}(t), \gamma(t))} \, dt$$

A natural question to ask is what curves minimize length between fixed endpoints $\gamma(a)$, $\gamma(b)$ in (M, g).

2 The Euler-Lagrange Equation of the Length Functional

For a given differentiable manifold the tangent bundle TM is a manifold whose points are (p, X) where $X \in T_p M$. If M is n-dimensional TM is 2n-dimensional, accounting for both the dimesion of M and $T_p M$. A basic example is for the circle $M = S^1$ which has $T_p M = \mathbb{R}$ at every point, and $TM = S^1 \times \mathbb{R}$. We define a Lagrangian on M to be a smooth function on the tangent bundle TM.

Thus $L(\gamma)$ is a Lagrangian as it only depends on the points $(\gamma(t), \dot{\gamma}(t)) \in TM$. We now seek to find the critical points of the length functional L by computing its Euler-Lagrange Equation.

Let $\gamma_{\epsilon} : [a, b] \to M$ be a one-parameter family of curves with fixed endpoints $\gamma_{\epsilon}(a) = \gamma(a), \ \gamma_{\epsilon}(b) = \gamma(b), \ \gamma_{0} = \gamma, \ \text{and} \ \gamma_{\epsilon}(t) \ C^{\infty} \ \text{in } \epsilon \ \text{and} \ t.$

If γ is a critical point of the length function L then for any one-parameter family γ_{ϵ} , $\frac{d}{dt}\Big|_{\epsilon=0} L(\gamma_{\epsilon}) = 0$. To compute the above derivative and derive the Euler-Lagrange equation we first define coordinates $\{x_1, \ldots, x_n\}$ on an open neighborhood $U_p \subset M$ of a point p and coordinates $\{p_1, \ldots, p_n\}$ on the tangent space so that for an arbitrary Lagrangian $\int F(\gamma, \dot{\gamma})$ we can compute

$$\frac{d}{d\epsilon}\Big|_{\epsilon=0}\int F(\gamma_{\epsilon},\dot{\gamma}_{\epsilon})\,dt = \int_{a}^{b}\left(\sum_{i}\left.\frac{\partial F}{\partial x_{i}}\frac{\partial \gamma_{\epsilon}^{i}}{\partial \epsilon}\right|_{\epsilon=0} + \sum_{i}\left.\frac{\partial F}{\partial p_{i}}\frac{\partial^{2}\gamma_{\epsilon}^{i}}{\partial \epsilon \partial t}\right|_{\epsilon=0}\right)\,dt$$

After integrating by parts

$$= \int_{a}^{b} \sum_{i} \left. \frac{\partial \gamma_{\epsilon}^{i}}{\partial \epsilon} \right|_{\epsilon=0} \left(\frac{\partial F}{\partial x_{i}} - \frac{d}{dt} \frac{\partial F}{\partial p_{i}} \right) dt$$

Thus $\frac{d}{d\epsilon}\Big|_{\epsilon=0} F(\gamma_{\epsilon}) = 0$ imples

$$\sum_{i} \frac{\partial F}{\partial x_i} - \frac{d}{dt} \frac{\partial F}{\partial p_i} = 0$$

which is the Euler-Lagrange equation of $\int F(\dot{\gamma}, \gamma)$. Now we compute the Euler-Lagrange equation for the specific case of the energy functional E which has the same critical points as the length functional L.

$$E(\gamma, \dot{\gamma}) = g_{kl} \dot{\gamma}^k(t) \dot{\gamma}^l(t)$$

suppressing the summation over repeated indices. The Euler-Lagrange equation becomes:

$$\sum_{i} \frac{\partial g_{kl}}{\partial x_{i}} \dot{\gamma}^{k} \dot{\gamma}^{l} = \frac{d}{dt} \left(\sum_{i} g_{kl} \dot{\gamma}^{k} \delta_{i}^{l} + \sum_{i} g_{kl} \dot{\gamma}^{l} \delta_{i}^{k} \right)$$
$$= \frac{d}{dt} \left(\sum_{i} g_{il} \dot{\gamma}^{l} + \sum_{i} g_{ki} \dot{\gamma}^{k} \right)$$
$$= \sum_{i} g_{il} \ddot{\gamma}^{l} + g_{ki} \ddot{\gamma}^{k} + \frac{\partial g_{il}}{\partial x_{m}} \dot{\gamma}^{m} \dot{\gamma}^{l} + \frac{\partial g_{ki}}{\partial x_{m}} \dot{\gamma}^{m} \dot{\gamma}^{k}$$

By using the symmetry that $g_{ij} = g_{ji}$, reindexing and combining the $\ddot{\gamma}$ terms, and rewriting $\frac{\partial g_{ij}}{\partial x_k} = g_{ij,k}$ we get

$$2\sum g_{il}\ddot{\gamma}^l = \sum \left(g_{mk,i} - g_{im,k} - g_{ik,m}\right)\dot{\gamma}^k\dot{\gamma}^m$$

Thus a curve γ is a critical point of the energy functional E, and thus a critical point of the length functional L, if it is a solution to this differential equation. Next we will show that this is the same geodesic equation that arises in differential geometry.

3 Geodesics from a Riemannian Geometry Viewpoint

Let (M, g) be a Riemannian manifold. The geodesic equation can also be derived by considering what it means for a curve to have zero acceleration in a manifold. The vector field $\dot{\gamma}$ is a well defined first derivative for a curve γ , but in order to have a well defined second derivative we must define a connection on M which will allow us to differentiate one vector field along another. An affine connection on M is a map $\nabla : TM \times TM \to TM$ satisfying two conditions.

$$1)\nabla_{aX+bY}Z = a\nabla_XZ + b\nabla_YZ$$
$$2)\nabla_X(aY) = a\nabla_XY + da(X)Y = a\nabla_XY + X(a)Y$$

for X, Y, Z sections of TM and a, b smooth functions on M

The Levi-Civita connection or Riemannian connection is an affine connection with the added properties of being symmetric and compatible with the metric.

$$3)\nabla_X Y - \nabla_Y X = [X, Y]$$

$$4)Xg(X, Y) = g(\nabla_X Y, X) + g(Y, \nabla_X Z)$$

With the Levi-Civita connection we can define a vector field X to be parallel along a curve γ if it satisfies $\nabla_{\dot{\gamma}(t)}X(t) = 0$. Because of the compatibility of ∇ with the metric g, the inner product g(X(t), Y(t)) of two vector fields which are parallel along γ is constant.

In order to facilitate computations with the connection we define the action of ∇ on the basis for the tangent space in local coordinates $\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\}$ which we will furthermore denote $\{\partial_1, \ldots, \partial_n\}$.

$$\nabla_{\partial_i}\partial_j = \Gamma^k_{ij}\partial_k$$
$$\Gamma_{ijk} = g_{kl}\Gamma^l_{ij}$$

 Γ_{ij}^k are called Christoffel symbols of the 2^{nd} kind and Γ_{ijk} are called Christoffel symbols of the 1^{st} kind. Lemma 3.1. The Levi-Civita connection is unique.

Proof. We will use the metric compatibility and apply this to basis vector fields.

$$\begin{aligned} \partial_k g(\partial_i, \partial_j) &= g_{ij,k} \\ &= g(\nabla_{\partial_k} \partial_i, \partial_j) + g(\partial_i, \nabla_{\partial_k} \partial_j) \\ &= g(\Gamma_{ki}^l \partial_l, \partial_j) + g(\partial_i, \Gamma_{kj}^l \partial_l) \\ &= \Gamma_{ki}^l g_{lj} + \Gamma_{kj}^l g_{il} \\ &= \Gamma_{kij} + \Gamma_{kji} \end{aligned}$$

By the symmetry of the connection

$$0 = [\partial_i, \partial_j]$$

= $\nabla_{\partial_i}, \partial_j - \nabla_{\partial_j} \partial_i$
= $(\Gamma^k_{ij} - \Gamma^k_{ji}) \partial_k$

 $\implies \Gamma^k_{ij} = \Gamma^k_{ji}$ and summing covariant derivatives of the metric

$$g_{ij,k} + g_{jk,i} - g_{ki,j} = \Gamma_{kij} + \Gamma_{kji} + \Gamma_{ijk} + \Gamma_{ikj} - \Gamma_{jki} - \Gamma_{jik}$$
$$= 2\Gamma_{ijk}$$

So the Christoffel symbols are determined by the metric and the connection is unique.

Now we define geodesics from a Riemannian geometry viewpoint as curves $\gamma: [a, b] \to M$ which have zero acceleration, or equivalently, parallel velocity vector fields $\dot{\gamma}$. Thus, the geodesic equation becomes $\nabla_{\dot{\gamma}}\dot{\gamma}$. In local coordinates, written in terms of the Christoffel symbols of the Riemmanian connection this becomes:

$$\gamma(t) = (x^1(t), \dots, x^n(t))$$
$$\dot{\gamma}(t) = (\dot{x}^1(t), \dots, \dot{x}^n(t))$$

$$\begin{aligned} \nabla_{\dot{\gamma}}\dot{\gamma} &= \nabla_{\dot{x}^{i}\partial_{i}}\dot{x}^{j}\partial_{j} \\ &= \dot{x}^{i}\dot{x}^{j}\Gamma_{ij}^{k}\partial_{k} + \ddot{x}^{k}\partial_{k} \\ &= (\dot{x}^{i}\dot{x}^{j}\Gamma_{ij}^{k} + \ddot{x}^{k})\partial_{k} = 0 \end{aligned}$$

So the geodesic equation is

$$\dot{\gamma}^i \dot{\gamma}^j \Gamma^k_{ij} + \ddot{\gamma}^k = 0$$

To show this is the same as the geodesic equation which we arrived at by variational methods

$$\begin{split} 0 &= 2\dot{\gamma}^{i}\dot{\gamma}^{j}\Gamma^{k}_{ij} + 2\ddot{\gamma}^{k} \\ &= 2g_{lk}\ddot{\gamma}^{k} + 2g_{lk}\Gamma^{k}_{ij}\dot{\gamma}^{i}\dot{\gamma}^{j} \\ &= 2g_{lk}\ddot{\gamma}^{k} + 2\Gamma_{ijl}\dot{\gamma}^{i}\dot{\gamma}^{l} \\ &= 2g_{lk}\ddot{\gamma}^{k} - (g_{li,j} - g_{ij,l} - g_{jl,i})\dot{\gamma}^{i}\dot{\gamma}^{j} \end{split}$$

which agrees with our variational method up to a change of indices.

4 Jacobi's Theorem

Next we seek to know when a critical point of the length functional is in fact a minimizer. All geodesics exist and are length minimizing in a small ball around any point. We describe these geodesics by the exponential map. Let γ be a geodesic in M such that $\gamma(0) = p$, $\dot{\gamma}(0) = X$. Then γ has constant speed $\sqrt{g(X,X)}$. The exponential map $exp_p: T_pM \to M$ is defined:

$$exp_p(X) = \gamma(1)$$
 $exp_p(tX) = \gamma(t)$

To find when a geodesic is length minimizing, we must understand the critical points of exp_p , so we need to know when $dexp_p$ has a nontrivial kernel. Thus we define a point $q = exp_p(tA)$ of a geodesic γ to be conjugate to p along γ if it is a critical value of exp_p . With this definition we can state the main theorem regarding length minimizing geodesics.

Theorem 4.1. If γ is a minimizing geodesic then none of its interior points are conjugate points.

Before we prove this theorem we must relate conjugate points to variations of a geodesic. Let $\gamma_{\epsilon}(t)$ be a variation such that $\gamma_0(t) = \gamma(t)$, $\gamma_{\epsilon}(0) = \gamma(0)$, and $\gamma_{\epsilon}(1) = \gamma(1)$. Our strategy is to assume the existence of a conjugate point along γ and show that this implies the existence of a variation γ_{ϵ} such that $\frac{\partial^2}{\partial \epsilon^2} L(\gamma_{\epsilon}) < 0$. Such a variation would show γ to in fact be a locally maximizing geodesic, thus proving the theorem.

$$\begin{split} \frac{\partial}{\partial \epsilon} L(\gamma_{\epsilon}) &= \int_{0}^{1} \frac{1}{2|\dot{\gamma}|} \frac{\partial}{\partial \epsilon} \left\langle \dot{\gamma}, \dot{\gamma} \right\rangle \, dt \\ &= \int_{0}^{1} \frac{1}{2|\dot{\gamma}|} 2 \left\langle \nabla_{\frac{\partial \gamma}{\partial \epsilon}} \dot{\gamma}, \dot{\gamma} \right\rangle \, dt \\ \frac{\partial^{2}}{\partial \epsilon^{2}} L(\gamma_{\epsilon}) &= \int_{0}^{1} \frac{-1}{|\dot{\gamma}|^{2}} \frac{1}{|\dot{\gamma}|} \left\langle \nabla_{\frac{\partial \gamma}{\partial \epsilon}} \dot{\gamma}, \dot{\gamma} \right\rangle^{2} + \frac{1}{|\dot{\gamma}|} \left[\left\langle \nabla_{\frac{\partial \gamma}{\partial \epsilon}} \nabla_{\frac{\partial \gamma}{\partial \epsilon}} \dot{\gamma}, \dot{\gamma} \right\rangle + \left| \nabla_{\frac{\partial \gamma}{\partial \epsilon}} \dot{\gamma} \right|^{2} \right] \, dt \end{split}$$

Now call $\frac{\partial \gamma}{\partial \epsilon}\Big|_{\epsilon=0} = \gamma' = X$ so that X(0) = 0 and X(1) = 0.

Since $\frac{\partial}{\partial \epsilon}$ and $\frac{\partial}{\partial t}$ are commuting vector fields in \mathbb{R}^n their pushforwards commute as $\left[\gamma_* \frac{\partial}{\partial \epsilon}, \gamma_* \frac{\partial}{\partial t}\right] = \gamma_* \left[\frac{\partial}{\partial \epsilon}, \frac{\partial}{\partial t}\right] = 0.$

This implies $0 = [\dot{\gamma}, X] = \nabla_{\dot{\gamma}} X - \nabla_X \dot{\gamma}.$

Thus, the first term in the integral of $\left.\frac{\partial^2}{\partial\epsilon^2}\right|_{\epsilon=0}L(\gamma_\epsilon)$ is

$$\frac{-1}{\left|\dot{\gamma}\right|^{3}}\left\langle \nabla_{\dot{\gamma}}X,\dot{\gamma}\right\rangle ^{2}=\frac{-1}{\left|\dot{\gamma}\right|^{3}}\left(\frac{d}{dt}\left\langle X,\dot{\gamma}\right\rangle \right)^{2}$$

To rewrite the second term of the integral we define the Riemannian curvature tensor as a map R : $TM\times TM\to TM$ defined as

$$R(X,Y)Z = \left(\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}\right)Z$$

which we can rewrite as a map $R: TM \times TM \times TM \times TM \to \mathbb{R}$ defined as

$$R(X, Y, Z, W) = g(R(X, Y)Z, W)$$

Now the second term of the integral can be rewritten as

$$\begin{split} \frac{1}{|\dot{\gamma}|} \left[\left\langle \nabla_X \nabla_{\dot{\gamma}} X, \dot{\gamma} \right\rangle + \left| \nabla_X \dot{\gamma} \right|^2 \right] &= \frac{1}{|\dot{\gamma}|} \left[- \left\langle \nabla_{\dot{\gamma}} \nabla_X X, \dot{\gamma} \right\rangle + \left\langle R(X, \dot{\gamma}) X, \dot{\gamma} \right\rangle + \left| \nabla_X \dot{\gamma} \right|^2 \right] \\ &= -\frac{d}{dt} \left\langle \nabla_X X, \dot{\gamma} \right\rangle + \left\langle R(X, \dot{\gamma}) X, \dot{\gamma} \right\rangle + \left| \nabla_X \dot{\gamma} \right|^2 \end{split}$$

And if we rescale γ to have constant unit speed the second variational formula for the length functional becomes

$$\frac{\partial^2}{\partial \epsilon^2}\Big|_{\epsilon=0} L(\gamma_{\epsilon}) = \int_a^b -\left(\frac{d}{dt} \langle X, \dot{\gamma} \rangle\right)^2 + \langle R(X, \dot{\gamma}), X, \dot{\gamma} \rangle + \left| \nabla_X \dot{\gamma} \right|^2 dt$$

Now we consider normal fields X such that $\langle X(t), \dot{\gamma}(t) \rangle = 0$ for any t. If X is normal along γ then the second variational formula becomes

$$I_{\gamma}(X) = \left. \frac{\partial^2}{\partial \epsilon^2} \right|_{\epsilon=0} L(\gamma_{\epsilon}) = \int_a^b R(X, \dot{\gamma}, X, \dot{\gamma}) + \left| \nabla_X \dot{\gamma} \right|^2 \, dt$$

Now we will seek minimizers of I and prove they have negative values when γ contains conjugate points. We consider I_{γ} over all vector fields along γ , which are sections of γ^*TM , vanishing at 0 and 1. $\gamma^*TM \simeq [0,1] \times \mathbb{R}^n$ and we can make this explicit by choosing a frame for T_pM which varies along γ . First choose $\{E_1,\ldots,E_n\}$, an orthonormal frame for $T_{\gamma(0)}M$ and extend $E_i(t) \in T_{\gamma(t)}M$ by the solution to $\nabla_{\dot{\gamma}}E_i(t) = 0, E_i(0) = E_i$. It can be shown that $E_i(t)$ is an orthonormal frame at each point of γ .

Decomposing a vector field X along γ as $X = \sum q_i(t)E_i(t)$, and $\dot{\gamma}(t) = \sum a_iE_i(t)$. Then $\nabla_{\dot{\gamma}}X = \sum \dot{q}_i^2(t)E_i(t)$.

Now the second variational formula for X along γ is

$$I_{\gamma}X = \int_{a}^{b} \sum \dot{q}_{i}^{2} + R_{ijkl} q_{i}a_{j}q_{k}a_{l} dt$$

where $R_{ijkl} = R(E_i, E_j, E_k, E_l)$.

Using the Euler-Lagrange equation for functionals of this type that we derived previously we find that the Euler-Lagrange equation for I is

$$2\ddot{q}_i = -R_{ijkl} a_j q_k a_l - R_{mjil} q_m a_j a_l$$

And using that $\sum \ddot{q}_i E_i = \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X$ we get the Jacobi Equation

$$\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X + R(\dot{\gamma}, X) \dot{\gamma} = 0$$

When X satisfies this equation it is called a Jacobi field. We seek to find a normal Jacobi field X with I(X) < 0 along a geodesic γ with a conjugate point, which will provide the contradiction needed to prove Theorem 4.1. But first we must show that any Jacobi field X with X(0) = 0 and X(1) = 0 can be obtained from a variation so that showing I(X) < 0 is sufficient for proving the theorem which concerns variations rather than Jacobi fields.

Proposition 4.2. There is a bijection between variations $\gamma_{\epsilon}(t)$ which are composed of geodesics and have a fixed start point $\gamma(0)$ and Jacobi fields X(t) with X(0) = 0.

Proof. First we'll show that a variation of geodesics with a fixed start point induces a Jacobi field X with X(0) = 0. Such a variation can be defined as $\gamma_{\epsilon}(t) = exp_{p}tA(\epsilon)$ with $A(\epsilon) \in T_{p}M$ and $A(0) = \dot{\gamma}(0)$. The induced Jacobi field is $X(t) = \gamma'_{\epsilon}(t) = dexp_{p}|_{tA(\epsilon)} (tA'(0))$. Clearly X(0) = 0.

Now we'll show that $\gamma'_{\epsilon}(t)$ is a Jacobi field.

$$\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} \gamma' + R(\gamma', \dot{\gamma}) \dot{\gamma} = 0$$

$$\iff \nabla_{\dot{\gamma}} \nabla_{\gamma'} \dot{\gamma} + R(\gamma', \dot{\gamma}) \dot{\gamma} = 0$$

$$\iff \nabla_{\gamma'} \nabla_{\dot{\gamma}} \dot{\gamma} + R(\dot{\gamma}, \gamma') \dot{\gamma} + R(\gamma', \dot{\gamma}) \dot{\gamma} = 0$$

$$\iff \nabla_{\gamma'} \nabla_{\dot{\gamma}} \dot{\gamma} = 0$$

But the last line being equal to 0 is exactly the geodesic equation, so γ'_{ϵ} is a Jacobi field.

Next we'll show that a Jacobi field X with X(0) = 0 gives rise to a variation of geodesics with a fixed start point. But first we'll give an argument for why for each variation with fixed start point $\phi(t,\epsilon) = \gamma_{\epsilon}(t) = exp_p(tA(\epsilon))$ which gives rise to a variational field $X(t) = \frac{\partial \phi}{\partial \epsilon}(t,0)$ has its covariant derivative $\nabla_{\dot{\gamma}} X(0) = A'(0)$. This relies on the fact that

$$\nabla_{\dot{\gamma}} X(t) = \nabla_{\dot{\gamma}} \left(\left. \frac{\partial \phi}{\partial \epsilon} \right|_{\epsilon=0} \right) = \left. \left(\nabla_{\gamma'} \dot{\gamma}_{\epsilon}(t) \right) \right|_{\epsilon=0}$$

Where in the last equality I used the relation $\nabla_{\dot{\gamma}} \frac{\partial \phi}{\partial \epsilon} = \nabla_{\gamma'} \frac{\partial \phi}{\partial t}$ between partial and covariant derivatives on the surface which is the image of ϕ . To see why this relation is true choose a local coordinate x for M near a point on the image of ϕ and compute

$$\begin{aligned} \nabla_{\dot{\gamma}} \left(\frac{\partial \phi}{\partial \epsilon} \right) &= \nabla_{\dot{\gamma}} \left(\frac{\partial x^{i}}{\partial \epsilon} \frac{\partial}{\partial x^{i}} \right) \\ &= \frac{\partial^{2} x^{i}}{\partial t \partial \epsilon} \frac{\partial}{\partial x^{i}} + \frac{\partial x^{i}}{\partial \epsilon} \nabla_{\frac{\partial x^{j}}{\partial t} \frac{\partial}{\partial x^{j}}} \frac{\partial}{\partial x^{i}} \\ &= \frac{\partial^{2} x^{i}}{\partial t \partial \epsilon} \frac{\partial}{\partial x^{i}} + \frac{\partial x^{i}}{\partial \epsilon} \frac{\partial x^{j}}{\partial t} \nabla_{\frac{\partial}{\partial x^{j}}} \frac{\partial}{\partial x^{i}} \end{aligned}$$

And the symmetry of the connection gives $\nabla_{\frac{\partial}{\partial x^j}} \frac{\partial}{\partial x^i} = \nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j}$ so a computation of $\nabla_{\gamma'} \frac{\partial \phi}{\partial t}$ gives the same result.

Thus $\nabla_{\dot{\gamma}} X(t) = (\nabla_{\gamma'} \dot{\gamma}_{\epsilon}(t))|_{\epsilon=0}$ and $\nabla_{\dot{\gamma}} X(0) = (\nabla_{\gamma'} A(\epsilon))|_{\epsilon=0}$. But since at t = 0 the the curve $\epsilon \mapsto \gamma_{\epsilon}(0)$ is constant, the covariant derivative is just a partial derivative with respect to ϵ and $\nabla_{\dot{\gamma}} X(0) = A'(0)$.

Now that we've established that $\nabla_{\dot{\gamma}} X(0) = A'(0)$, we continue the proof by considering an arbitrary Jacobi field with initial value 0.

Given such an X let $B = \nabla_{\dot{\gamma}} X(0)$. Now define $A(\epsilon) = \dot{\gamma}(0) + \epsilon B$ and consider the variation $\gamma_{\epsilon}(t) = exp_p t A(\epsilon)$. The induced Jacobi field is $Y(t) = \gamma'_{\epsilon}(t) = dexp_p|_{tA(\epsilon)}(tB)$. But Y(0) = X(0) = 0 and $\nabla_{\dot{\gamma}} Y(0) = B = \nabla_{\dot{\gamma}} X(0)$ by the argument given above, so by the uniqueness of ordinary differential equations X(t) = Y(t) and X(t) is induced by a variation of geodesics with a fixed start point. \Box

Before proving the existence of a Jacobi field with I(X) < 0, we will first prove a helpful proposition.

Proposition 4.3. If X is a Jacobi field such that $\langle X(0), \dot{\gamma}(0) \rangle = \langle X(1), \dot{\gamma}(1) \rangle = 0$ then X is a normal Jacobi field, and if furthermore X(0) = X(1) = 0 then I(X) = 0.

Proof. To show that X is normal we must show $\langle \dot{\gamma}, X \rangle = 0$. First we note

$$\frac{d}{dt}\left<\dot{\gamma},X\right> = \left<\dot{\gamma},\nabla_{\dot{\gamma}}X\right>$$

And taking a further derivative

$$\begin{split} \frac{d^2}{dt^2} \left< \dot{\gamma}, \nabla_{\dot{\gamma}} X \right> &= \left< \dot{\gamma}, \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X \right> \\ &= - \left< \dot{\gamma}, R(X, \dot{\gamma}) \dot{\gamma} \right> \\ &= -R(\dot{\gamma}, \dot{\gamma}, X, \dot{\gamma}) = 0 \end{split}$$

So $\langle \dot{\gamma}, X \rangle = at + b$ for $a, b \in \mathbb{R}$ and by using the conditions on the endpoints we can show that $\langle \dot{\gamma}, X \rangle = 0$, so X is normal. Thus, the equation for $I(\gamma)$ reduces to:

$$\begin{split} I(X) &= \int_0^1 |\nabla_{\dot{\gamma}} X|^2 - R(X, \dot{\gamma}, X, \dot{\gamma}) \, dt \\ &= \int_0^1 \langle \nabla_{\dot{\gamma}} X, \nabla_{\dot{\gamma}} X \rangle + \langle X, \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X \rangle \, dt \\ &= \int_0^1 \frac{d}{dt} \langle X, \nabla_{\dot{\gamma}} X \rangle \, dt \\ &= \langle X, \nabla_{\dot{\gamma}} X \rangle |_0^1 = 0 \end{split}$$

as the conditions on the endpoints are the same.

Now we have all of the tools necessary to prove Theorem 4.1 which states that if γ is a minimizing geodesic then none of its interior points are conjugate points.

Proof. We will prove the theorem by contradiction, assuming there exists a conjugate point at $\gamma(t_0)$ and showing that γ cannot be length minimizing. To this end we will show there exists a normal Jacobi field Y along γ , which by Proposition 4.2 is the variational field of some variation $\gamma_{\epsilon}(t)$, such that the second variation of Y, I(Y) < 0 which would imply γ is locally length maximizing.

First we show the existence of a normal Jacobi field such that X(0) = 0 and $X(t_0) = 0$, where $\gamma(t_0)$ is the conjugate point to $\gamma(0)$. Since $\gamma(t_0)$ is conjugate, there exists $A(\epsilon) \in T_p M$ such that $A'(0) \in ker\left(dexp_p|_{t_0A}\right)$, and defining $X(t) = dexp_p|_{t_A(\epsilon)}(tA'(t))$ gives the desired Jacobi field. And by Proposition 4.3 it is normal on $[0, t_0]$ and has I(X) = 0 on that interval.

Around every point in a Riemannian manifold the exponential map is a diffeomorphism from a small ball in the tangent space to a small normal neighborhood in the manifold. Thus there exists $\delta > 0$ such that

_

the exponential map is a diffeomorphism on $B(0,\delta) \subset T_{\gamma(t_0)}M$. Thus $exp_{\gamma(t_0)}$ cannot have any critical points in the interval, so none of the points on $\gamma|_{[t_0-\delta,t_0+\delta]}$ are conjugate to $\gamma(t_0-\delta)$. Now we seek to prove the existence of a Jacobi field Z(t) on $[t_0-\delta,t_0+\delta]$ such that $Z(t_0-\delta) = X(t_0\delta)$ and $Z(t_0+\delta) = 0$.

We first note that since the Jacobi equation is an system of n second-order ordinary differential equations, its solution set is 2n-dimensional. Next, we consider the linear map $\alpha : X \mapsto (X(t_0 - \delta), X(t_0 + \delta))$ from the 2n-dimensional space of Jacobi fields to the 2n-dimensional space $T_{\gamma(t_0-\delta)}M \oplus T_{\gamma(t_0+\delta)}M$. It is injective as it is a homomorphism of vector spaces and the only Jacobi field which has both endpoints 0 is the unique solution X(t) = 0 of the Jacobi equation with those initial conditions. But since the dimension of the domain and codomain are both 2n it is surjective as well. Thus there exists a Jacobi field Z with the perscribed endpoints. By *Proposition 4.3 Z* is normal.

Before we define our final Jacobi field which will satisfy I(Y) < 0, we will first show that the Jacobi field Z defined above is minimal in the sense that I(Z) < I(W) where W is any other piecewise smooth field along γ . Since Z is normal, it can be written as an \mathbb{R} -linear combination of of $\{W_1, \ldots, W_{n-1}\}$, a basis for the subspace of normal Jacobi fields. A computation shows that for a smooth field $W = f^i W_i$, where now f^i are smooth functions, I can be written.

$$I(W) = \int_0^1 \left| \dot{f}^i W_i \right|^2 dt + f^i(1) f^j(1) \left< \nabla_{\dot{\gamma}} W_i, W_j \right> \right|_{t=1}$$

And since Z is normal, the f^i s are constant, and the formula reduces to.

$$I(Z) = f^{i}(1)f^{j}(1) \left\langle \nabla_{\dot{\gamma}}W_{i}, W_{j} \right\rangle |_{t=t_{0}+\delta}$$

Thus for any smooth field W which agrees with Z on $t_0 - \delta$ and $t_0 + \delta$ we have

$$I(W) - I(Z) = \int_{t_0 - \delta}^{t_0 + \delta} \left| \dot{f}^i W_i \right|^2 \, dt \ge 0$$

And so Z is strictly minimal amongst smooth fields with the same endpoints. Now define the Jacobi field Y on all of γ by

$$Y(t) = \begin{cases} X(t) & t \in [0, t_0 - \delta] \\ Z(t) & t \in [t_0 - \delta, t_0 + \delta] \\ 0 & t \in [t_0 + \delta, 1] \end{cases}$$

And we compute

$$I_0^1(Y) = I_0^{t_0+\delta}(Y) = I_0^{t_0-\delta}(X) + I_{t_0-\delta}^{t_0+\delta}(Z)$$

= $I_0^{t_0}(X) - I_{t_0-\delta}^{t_0}(X) + I_{t_0\delta}^{t_0+\delta}(Z)$
= $I_{t_0-\delta}^{t_0+\delta}(Z) - I_{t_0-\delta}^{t_0}$

And Z is minimal by the argument above, so for a field defined

$$W(t) = \begin{cases} X(t) & t \in [t_0 - \delta, t_0] \\ 0 & t \in [t_0, t_0 + \delta] \end{cases}$$

W and Z have the same endpoints, so I(Z) < I(W), and since $I_{t_0-\delta,t_0}^{t_0}(X) = I_{t_0-\delta}^{t_0+\delta}(W)$, it follows that $I_0^1(Y) < 0$, contradicting the fact that γ was length minimizing.

Geometric Analysis Homework 1

The first four exercises are taken from <u>Geometry VI: Riemannian Geometry</u> by M.M. Postnikov. *Exercise 11.3* Prove that parallel translation with respect to a Riemannian connection is an isometric mapping of tangent spaces.

Proof. Let X(t) and Y(t) be parallel vector fields along γ so that $\nabla_{\dot{\gamma}(t)}X(t) = \nabla_{\dot{\gamma}(t)}Y(t) = 0$. To prove parallel translation is an isometry we must show $\langle X(t), Y(t) \rangle$ is constant.

$$\frac{d}{dt}\left\langle X(t), Y(t)\right\rangle = \left\langle \nabla_{\dot{\gamma}(t)}X(t), Y(t)\right\rangle + \left\langle X(t), \nabla_{\dot{\gamma}(t)}Y(t)\right\rangle = 0$$

Thus parallel translation is an isometry.

Exercise 11.4 Prove that the matrix for the Lagrangian L on TM with local coordinates $(q^1, \ldots, q^n, \dot{q}^1, \ldots, \dot{q}^n)$ given by

$$\left[\frac{\partial^2 L}{\partial \dot{q}^i \partial \dot{q}^j}\right]$$

does not depend on the choice of local coordinates.

Proof. Let ϕ be a change of coordinates such that $\phi(q) = p$. This induces a change of coordinates on the tangent space by $\dot{p} = (d\phi)^{-1}\dot{q}$ and more specifically $\dot{p}_i = (d\phi^{-1})_{ji}\dot{q}_j$. Thus $\frac{\partial \dot{p}_i}{\partial \dot{q}^j} = (d\phi^{-1})_{ji}$ and $\frac{\partial^2 \dot{p}_i}{\partial \dot{q}^j \partial \dot{q}^k} = 0$. Under the change of coordinates L changes as

$$L(q, \dot{q}) = L(\phi^{-1}(p), d\phi(\dot{p})) = G(p, \dot{p})$$

And the partial derivatives of L change as

$$\frac{\partial L}{\partial \dot{q}_i} = \frac{\partial G}{\partial \dot{p}_k} \frac{\partial \dot{p}_k}{\partial \dot{q}_i}$$

$$\begin{split} \frac{\partial^2 L}{\partial \dot{q}_i \partial \dot{q}_j} &= \frac{\partial}{\partial \dot{q}^j} \left(\frac{\partial G}{\partial \dot{p}_k} \frac{\partial \dot{p}_k}{\partial \dot{q}_i} \right) \\ &= \frac{\partial G}{\partial \dot{p}_k} \frac{\partial^2 \dot{p}_k}{\partial \dot{q}_i \partial \dot{q}_j} + \frac{\partial^2 G}{\partial \dot{p}_k \partial \dot{p}_l} \frac{\partial \dot{p}_l}{\partial \dot{q}_j} \frac{\partial \dot{p}_k}{\partial \dot{q}_i} \\ &= \frac{\partial^2 G}{\partial \dot{p}_k \partial \dot{p}_l} \frac{\partial \dot{p}_l}{\partial \dot{q}_j} \frac{\partial \dot{p}_k}{\partial \dot{q}_i} \\ &= \frac{\partial^2 L}{\partial \dot{p}_k \partial \dot{p}_l} \left(\frac{\partial \dot{q}_j}{\partial \dot{p}_i} \frac{\partial \dot{q}_i}{\partial \dot{p}_j} \right) \left(\frac{\partial \dot{p}_l}{\partial \dot{q}_j} \frac{\partial \dot{p}_k}{\partial \dot{q}_i} \right) \\ &= \frac{\partial^2 L}{\partial \dot{p}_k \partial \dot{p}_l} \delta^l_i \delta^k_j \\ &= \frac{\partial^2 L}{\partial \dot{p}_j \partial \dot{p}_i} \end{split}$$

So $\left[\frac{\partial^2 L}{\partial \dot{q}^i \partial \dot{q}^j}\right]$ does not depend on the choice of local coordinates.

Exercise 12.2 Prove that a geodesic remains a geodesic under a reparameterization iff this reparameterization is linear (has the form $t \mapsto at + b$, where $a \neq 0$).

Proof. Consider a reparameterization s = g(t) for the geodesic $\gamma(s)$. Now put the reparameterized curve $\gamma(g(t))$ into the geodesic equation.

$$\begin{aligned} \frac{d^2}{dt^2} \gamma^i(g(t)) &+ \Gamma^i_{kj}(\gamma(g(t))) \frac{d}{dt} \gamma^j(t) \frac{d}{dt} \gamma^k(t) \\ &= \ddot{\gamma}^i(g(t))(g'(t))^2 + \dot{\gamma}^i(g(t))g''(t) + \Gamma^i_{kj}(\gamma(g(t))\dot{\gamma}^j(g(t))\dot{\gamma}^k(g(t))(g'(t))^2 \\ &= \dot{\gamma}^i(s)g''(t) + \left[\ddot{\gamma}^i(s) + \Gamma^i_{kj}(\gamma(s)\dot{\gamma}^j(s)\dot{\gamma}^k(s)\right]g''(t) \\ &= \dot{\gamma}^i(s)g''(t) \end{aligned}$$

Where the last equality is because $\gamma(s)$ is a geodesic. Since $\dot{\gamma}^i(s) \neq 0$, $\gamma(g(t))$ is a geodesic iff g''(t) = 0iff g(t) = at + b for $a, b \in \mathbb{R}$ and $a \neq 0$.

Exercise 27.1 Show that for any piecewise smooth field X on the geodesic γ , the inequality

$$I_0^1(X^{\perp}) \le I_0^1(X)$$

holds, where X^{\perp} is the normal component of the field X (i.e., $X(t) - X^{\perp}(t)$ is collinear to the vector $\dot{\gamma}(t)$ for every t).

Proof. Assuming $\gamma : [a, b] \to M$ is a unit speedgeodesic, let $\{\dot{\gamma}(a) = A_1, A_2, \dots, A_n\}$ be an orthonormal basis for $T_{\gamma(a)}M$. Parallel transporting each of these vectors along γ based on the unique solution to the differential equation $\nabla_{\dot{\gamma}(t)}X_i(t) = 0, X_i(0) = A_i$ yields an orthonormal frame along γ with $X_1(t) = \dot{\gamma}(t)$.

Thus, any smooth vector field X along γ can be written as $X = \sum_{i=1}^{n} f^{i}X_{i}$ for f^{i} smooth functions. Then

$$X^{\perp} = \sum_{i=2} f^i X_i$$
 as X^{\perp} has no component parallel to $X_1 = \dot{\gamma}$. On smooth vector fields $I(x)$ is given by

$$\int_{a}^{b} \left[\langle \nabla_{\dot{\gamma}} X, \nabla_{\dot{\gamma}} X \rangle - R(X, \dot{\gamma}, X, \dot{\gamma}) - \langle \nabla_{\dot{\gamma}} X, \dot{\gamma} \rangle^{2} \right] dt$$

Examining the first term in the integral we see

$$\langle \nabla_{\dot{\gamma}} X, \nabla_{\dot{\gamma}} X \rangle = \langle \nabla_{\dot{\gamma}} f^{i} X_{i}, \nabla_{\dot{\gamma}} f^{j} X_{j} \rangle$$

$$= \left\langle \dot{f}^{i} X_{i} + f^{i} \nabla_{\dot{\gamma}} X_{i}, \dot{f}^{j} X_{j} + f^{j} \nabla_{\dot{\gamma}} X_{j} \right\rangle$$

$$= \sum \left| \dot{f}^{i} \right|^{2}$$

And comparing X to X^{\perp} we see

$$\int_{a}^{b} \left\langle \nabla_{\dot{\gamma}} X, \nabla_{\dot{\gamma}} X \right\rangle \, dt - \int_{a}^{b} \left\langle \nabla_{\dot{\gamma}} X^{\perp}, \nabla_{\dot{\gamma}} X^{\perp} \right\rangle \, dt = \int_{a}^{b} \left| \dot{f}^{1} \right|^{2} \, dt$$

Examining the second term in the integral, since R(X, Y, Z, Z) = 0 by the symmetries of the curvature tensor, it follows that $R(f^iX_i, \dot{\gamma}, f^1X_1, \dot{\gamma}) = R(f^iX_i, \dot{\gamma}, f^1X_1, X_1) = 0$. Thus $R(X, \dot{\gamma}, X, \dot{\gamma}) = R(X^{\perp}, \dot{\gamma}, X^{\perp}, \dot{\gamma})$ and their difference contributes nothing to the integral.

Examining the third term in the integral we see

$$\langle \nabla_{\dot{\gamma}} X, \dot{\gamma} \rangle^2 = \langle f^i X_i, X_1 \rangle^2$$

= $|f^1|^2$

And comparing X to X^{\perp} we see

$$-\int_{a}^{b} \left\langle \nabla_{\dot{\gamma}} X, \dot{\gamma} \right\rangle^{2} dt - \left(-\int_{a}^{b} \left\langle \nabla_{\dot{\gamma}} X^{\perp}, \dot{\gamma} \right\rangle^{2} dt \right) = -\left| f^{1} \right|^{2}$$

So together

$$I(X) - I(X^{\perp}) = \int_{a}^{b} \left| f^{1} \right|^{2} - \left| f^{1} \right|^{2} dt = 0$$

Exercise 5 Prove that the Jacobi field Z from the proof of Theorem 4.1 from the notes on Lectures 1-4 is normal.

Proof. The Jacobi field Z(t), which is defined on $[t_0 - \delta, t_0 + \delta]$ has the property that $Z(t_0 - \delta) = X(t_0 - \delta)$ where X is a normal Jacobi field on $[0, t_0]$, and $Z(t_0 + \delta) = 0$. Thus $\langle Z(t_0 - \delta), \dot{\gamma}(t_0 - \delta) \rangle = \langle X(t_0 - \delta), \dot{\gamma}(t_0 - \delta) \rangle = 0$ as X was already shown to be normal. Likewise $\langle Z(t_0 + \delta), \dot{\gamma}(t_0 + \delta) \rangle = \langle 0, \dot{\gamma}(t_0 + \delta) \rangle = 0$.

By Proposition 4.3 Z must be minimal.

Exercise 6 Prove that the normal Jacobi field Z from the proof of *Theorem* 4.1 from the note on Lectures 1-4 is minimal.

Before beginning the proof of the minimality of Z I will state and prove a lemma.

Lemma 0.1. For any smooth normal vector field $W = f^i W_i$ written in terms of an orthonormal basis $\{W_1, \ldots, W_{n-1}\}$ for the space of normal Jacobi fields with a prescribed final value. If W(1) = 0 we can write I(W) as

$$I(W) = \int_0^1 \left| \dot{f}^i W_i \right|^2 \, dt - f^i(0) f^j(0) \, \left\langle \nabla_{\dot{\gamma}} W_i, W_j \right\rangle \Big|_{t=0}$$

Proof. The formula for I of a normal vector field is as shown in the notes

$$I(W) = \int_0^1 \left[\langle \nabla_{\dot{\gamma}} W, \nabla_{\dot{\gamma}} W \rangle - R(W, \dot{\gamma}, W, \dot{\gamma}) \right] dt$$

Computing the first term

$$\begin{split} \langle \nabla_{\dot{\gamma}} W, \nabla_{\dot{\gamma}} W \rangle &= \left\langle \dot{f}^{i} W_{i} + f^{i} \nabla_{\dot{\gamma}} W_{i}, \dot{f}^{j} W_{j} + f^{j} \nabla_{\dot{\gamma}} W_{j} \right\rangle \\ &= \left| \dot{f}^{i} W_{i} \right|^{2} + 2 \dot{f}^{i} f^{j} \left\langle W_{i}, \nabla_{\dot{\gamma}} W_{j} \right\rangle + f^{i} f^{j} \left\langle \nabla_{\dot{\gamma}} W_{i}, \nabla_{\dot{\gamma}}, W_{j} \right\rangle \end{split}$$

Computing the second term

$$\begin{aligned} R(W,\dot{\gamma},W\dot{\gamma}) &= f^i f^j \left\langle R(W_i,\dot{\gamma})\dot{\gamma},W_j \right\rangle \\ &= -f^i f^j \left\langle \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} W_i,W_j \right\rangle \end{aligned}$$

Where the last equality is because of the Jacobi equation applied to W_i . Noting

$$\frac{d}{dt} \left\langle \nabla_{\dot{\gamma}} W_i, W_j \right\rangle = \left\langle \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} W_i, W_j \right\rangle + \left\langle \nabla_{\dot{\gamma}} W_i, \nabla_{\dot{\gamma}} W_j \right\rangle$$

We see that

$$\left\langle \nabla_{\dot{\gamma}}W, \nabla_{\dot{\gamma}}W \right\rangle - R(W, \dot{\gamma}, W, \dot{\gamma}) = \left| \dot{f}^{i}W_{i} \right|^{2} + 2\dot{f}^{i}f^{j}\left\langle W_{i}, \nabla_{\dot{\gamma}}W_{j} \right\rangle + f^{i}f^{j}\frac{d}{dt}\left\langle \nabla_{\dot{\gamma}}W_{i}, W_{j} \right\rangle$$

Also we have

$$\frac{d}{dt}\left\langle f^{i}\nabla_{\dot{\gamma}}W_{i}, f^{j}W_{j}\right\rangle = \dot{f}^{i}f^{j}\left\langle \nabla_{\dot{\gamma}}W_{i}, W_{j}\right\rangle + f^{j}\dot{f}^{i}\left\langle \nabla_{\dot{\gamma}}W_{j}, W_{i}\right\rangle + f^{i}f^{j}\frac{d}{dt}\left\langle \nabla_{\dot{\gamma}}W_{i}, W_{j}\right\rangle$$

So we see that,

$$\left\langle \nabla_{\dot{\gamma}}W, \nabla_{\dot{\gamma}}W \right\rangle - R(W, \dot{\gamma}, W, \dot{\gamma}) = \left| \dot{f}^{i}W_{i} \right|^{2} + \dot{f}^{i}f^{j} \left[\left\langle W_{i}, \nabla_{\dot{\gamma}}W_{j} \right\rangle + \left\langle \nabla_{\dot{\gamma}}W_{i}, W_{j} \right\rangle \right] + \frac{d}{dt} \left\langle f^{i}\nabla_{\dot{\gamma}}W_{i}, f^{j}W_{j} \right\rangle$$

Now to show that the middle term of the right hand side is zero

$$\frac{d}{dt} \left\langle \nabla_{\dot{\gamma}} W_i, W_j \right\rangle = \left\langle \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} W_i, W_j \right\rangle + \left\langle \nabla_{\dot{\gamma}} W_i, \nabla_{\dot{\gamma}} W_j \right\rangle$$
$$= \left\langle \nabla_{\dot{\gamma}} W_i, \nabla_{\dot{\gamma}} W_j \right\rangle - R(W_j, \dot{\gamma}, W_i, \dot{\gamma})$$

And likewise

$$\frac{d}{dt} \langle W_i, \nabla_{\dot{\gamma}} W_j \rangle = \langle \nabla_{\dot{\gamma}} W_i, \nabla_{\dot{\gamma}} W_j \rangle - R(W_j, \dot{\gamma}, W_i, \dot{\gamma})$$

And examining the middle term of the previous expansion

$$\frac{d}{dt}\left[\langle W_i, \nabla_{\dot{\gamma}} W_j \rangle - \langle \nabla_{\dot{\gamma}} W_i, W_j \rangle\right] = 0$$

So it is equal to a constant, but since $W_i(1) = W_j(1) = 0$ the whole term is equal to 0. And we can simplify

$$\left\langle \nabla_{\dot{\gamma}} W, \nabla_{\dot{\gamma}} W \right\rangle - R(W, \dot{\gamma}, W \dot{\gamma}) = \left| \dot{f}^i W_i \right|^2 + \frac{d}{dt} \left\langle f^i \nabla_{\dot{\gamma}} W_i, f^j W_j \right\rangle$$

And integrating from 0 to 1 gives the desired result

Now we return to the proof of the minimality of Z.

Proof. Z is in particular a smooth normal field, so it can be written in terms of an orthonormal basis $\{W_1, \ldots, W_{n-1}\}$ for the space of normal Jacobi fields with perscribed initial value $Z(t_0 - \delta) = X(t_0 - \delta)$. Let $Z(t) = f^i W_i$. Since Z is a Jacobi field, it is a solution of the Jacobi equation. Evaluating the Jacobi equation for $f^i W_i$ and using the fact that each W_i satisfies the Jacobi equation gives

$$\begin{split} 0 &= \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} (f^i W_i) + R(\dot{\gamma}, f^i W_i) \dot{\gamma} = \nabla_{\dot{\gamma}} \left(\dot{f}^i W_i + f^i \nabla_{\dot{\gamma}} W_i \right) + f^i R(\dot{\gamma}, W_i) \dot{\gamma} \\ &= \ddot{f}^i W_i + 2 \dot{f}^i \nabla_{\dot{\gamma}} W_i + f^i \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} W_i + f^i R(\dot{\gamma}, W_i) \dot{\gamma} \\ &= \ddot{f}^i W_i + 2 \dot{f}^i \nabla_{\dot{\gamma}} W_i \end{split}$$

This implies that $\dot{f}^i = 0 \quad \forall i$. If not, then $\nabla_{\dot{\gamma}} W_i$ would be some multiple of W_i which would contradict the fact that $Z(t_0 + \delta) = 0$. Thus f^i is a constant for each *i*. By the lemma, I(W) can be written

$$I(W) = \int_0^1 \left| \dot{f}^i W_i \right|^2 \, dt - f^i(0) f^j(0) \, \left\langle \nabla_{\dot{\gamma}} W_i, W_j \right\rangle \Big|_{t=0}$$

And for $Z = f^i W_i$ where the coefficients are constant the formula reduces to

$$I(Z) = -f^{i}(t_{0} - \delta)f^{j}(t_{0} - \delta)\left\langle \nabla_{\dot{\gamma}}W_{i}, W_{j}\right\rangle\big|_{t=t_{0} - \delta}$$

And for any smooth field $W = g^i W_i$ which agrees with Z on $t_0 - \delta$ and $t_0 + \delta$ we have

$$I(W) - I(Z) = \int_{t_0 - \delta}^{t_0 + \delta} |\dot{g}^i W_i|^2 \, dt \ge 0$$

So Z is strictly minimal amongst smooth fields with the same endpoints.