Geometric Analysis: Lectures 1-4

1 Basics of Differentiable Manifolds

A differentiable manifold M is a topological space which is locally homeomorphic to an open subset of \mathbb{R}^{n} and whose transition functions are smooth maps between these open subsets. Using the transition functions we can give coordinates around a point in the manifold. These coordinates will usually be denoted $\left\{x_{1}(\cdot), x_{2}(\cdot), \ldots, x_{n}(\cdot)\right\}$ so that $x(p)=(0, \ldots, 0)$.
The tangent space at each point $p \in M$, denoted $T_{p} M$, is an n-dimensional vector space spanned by the vectors $\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$. The inner product on this tangent space is given by the metric g at the point p. For any vectors $X, Y \in T_{p} M$ the inner product is denoted $g(X, Y, p)$. For any point q in a neighborhood of p the metric can be written as a matrix with coefficients $g_{i j}(q)=g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}, q\right)$. We require the functions $g_{i j}$ to vary smoothly in the coordinate neighborhood on which they're defined.
The metric can be used to measure the length of differentiable curves $\gamma:[a, b] \rightarrow M$ with velocity vector fields $\dot{\gamma}(t) \in T_{\gamma(t)} M$

$$
L(\gamma)=\int_{a}^{b} \sqrt{g(\dot{\gamma}(t), \dot{\gamma}(t), \gamma(t))} d t
$$

A natural question to ask is what curves minimize length between fixed endpoints $\gamma(a), \gamma(b)$ in (M, g).

2 The Euler-Lagrange Equation of the Length Functional

For a given differentiable manifold the tangent bundle $T M$ is a manifold whose points are (p, X) where $X \in T_{p} M$. If M is n-dimensional $T M$ is 2 n -dimensional, accounting for both the dimesion of M and $T_{p} M$. A basic example is for the circle $M=S^{1}$ which has $T_{p} M=\mathbb{R}$ at every point, and $T M=S^{1} \times \mathbb{R}$. We define a Lagrangian on M to be a smooth function on the tangent bundle $T M$.
Thus $L(\gamma)$ is a Lagrangian as it only depends on the points $(\gamma(t), \dot{\gamma}(t)) \in T M$. We now seek to find the critical points of the length functional L by computing its Euler-Lagrange Equation.
Let $\gamma_{\epsilon}:[a, b] \rightarrow M$ be a one-parameter family of curves with fixed endpoints $\gamma_{\epsilon}(a)=\gamma(a), \gamma_{\epsilon}(b)=\gamma(b)$, $\gamma_{0}=\gamma$, and $\gamma_{\epsilon}(t) C^{\infty}$ in ϵ and t.
If γ is a critical point of the length function L then for any one-parameter family $\gamma_{\epsilon},\left.\frac{d}{d t}\right|_{\epsilon=0} L\left(\gamma_{\epsilon}\right)=0$.
To compute the above derivative and derive the Euler-Lagrange equation we first define coordinates $\left\{x_{1}, \ldots, x_{n}\right\}$ on an open neighborhood $U_{p} \subset M$ of a point p and coordinates $\left\{p_{1}, \ldots, p_{n}\right\}$ on the tangent space so that for an arbitrary Lagrangian $\int F(\gamma, \dot{\gamma})$ we can compute

$$
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \int F\left(\gamma_{\epsilon}, \dot{\gamma}_{\epsilon}\right) d t=\int_{a}^{b}\left(\left.\sum_{i} \frac{\partial F}{\partial x_{i}} \frac{\partial \gamma_{\epsilon}^{i}}{\partial \epsilon}\right|_{\epsilon=0}+\left.\sum_{i} \frac{\partial F}{\partial p_{i}} \frac{\partial^{2} \gamma_{\epsilon}^{i}}{\partial \epsilon \partial t}\right|_{\epsilon=0}\right) d t
$$

After integrating by parts

$$
=\left.\int_{a}^{b} \sum_{i} \frac{\partial \gamma_{\epsilon}^{i}}{\partial \epsilon}\right|_{\epsilon=0}\left(\frac{\partial F}{\partial x_{i}}-\frac{d}{d t} \frac{\partial F}{\partial p_{i}}\right) d t
$$

Thus $\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} F\left(\gamma_{\epsilon}\right)=0$ imples

$$
\sum_{i} \frac{\partial F}{\partial x_{i}}-\frac{d}{d t} \frac{\partial F}{\partial p_{i}}=0
$$

which is the Euler-Lagrange equation of $\int F(\dot{\gamma}, \gamma)$. Now we compute the Euler-Lagrange equation for the specific case of the energy functional E which has the same critical points as the length functional L.

$$
E(\gamma, \dot{\gamma})=g_{k l} \dot{\gamma}^{k}(t) \dot{\gamma}^{l}(t)
$$

suppressing the summation over repeated indices. The Euler-Lagrange equation becomes:

$$
\begin{aligned}
\sum_{i} \frac{\partial g_{k l}}{\partial x_{i}} \dot{\gamma}^{k} \dot{\gamma}^{l} & =\frac{d}{d t}\left(\sum_{i} g_{k l} \dot{\gamma}^{k} \delta_{i}^{l}+\sum_{i} g_{k l} \dot{\gamma}^{l} \delta_{i}^{k}\right) \\
& =\frac{d}{d t}\left(\sum_{i} g_{i l} \dot{\gamma}^{l}+\sum_{i} g_{k i} \dot{\gamma}^{k}\right) \\
& =\sum_{i} g_{i l} \ddot{\gamma}^{l}+g_{k i} \ddot{\gamma}^{k}+\frac{\partial g_{i l}}{\partial x_{m}} \dot{\gamma}^{m} \dot{\gamma}^{l}+\frac{\partial g_{k i}}{\partial x_{m}} \dot{\gamma}^{m} \dot{\gamma}^{k}
\end{aligned}
$$

By using the symmetry that $g_{i j}=g_{j i}$, reindexing and combining the $\ddot{\gamma}$ terms, and rewriting $\frac{\partial g_{i j}}{\partial x_{k}}=g_{i j, k}$ we get

$$
2 \sum g_{i l} \ddot{\gamma}^{l}=\sum\left(g_{m k, i}-g_{i m, k}-g_{i k, m}\right) \dot{\gamma}^{k} \dot{\gamma}^{m}
$$

Thus a curve γ is a critical point of the energy functional E, and thus a critical point of the length functional L, if it is a solution to this differential equation. Next we will show that this is the same geodesic equation that arises in differential geometry.

3 Geodesics from a Riemannian Geometry Viewpoint

Let (M, g) be a Riemannian manifold. The geodesic equation can also be derived by considering what it means for a curve to have zero acceleration in a manifold. The vector field $\dot{\gamma}$ is a well defined first derivative for a curve γ, but in order to have a well defined second derivative we must define a connection on M which will allow us to differentiate one vector field along another. An affine connection on M is a map $\nabla: T M \times T M \rightarrow T M$ satisfying two conditions.

$$
\begin{aligned}
& \text { 1) } \nabla_{a X+b Y} Z=a \nabla_{X} Z+b \nabla_{Y} Z \\
& \text { 2) } \nabla_{X}(a Y)=a \nabla_{X} Y+d a(X) Y=a \nabla_{X} Y+X(a) Y
\end{aligned}
$$

for X, Y, Z sections of $T M$ and a, b smooth functions on M
The Levi-Civita connection or Riemannian connection is an affine connection with the added properties of being symmetric and compatible with the metric.

$$
\begin{aligned}
& \text { 3) } \nabla_{X} Y-\nabla_{Y} X=[X, Y] \\
& \text { 4) } X g(X, Y)=g\left(\nabla_{X} Y, X\right)+g\left(Y, \nabla_{X} Z\right)
\end{aligned}
$$

With the Levi-Civita connection we can define a vector field X to be parallel along a curve γ if it satisfies $\nabla_{\dot{\gamma}(t)} X(t)=0$. Because of the compatibility of ∇ with the metric g, the inner product $g(X(t), Y(t))$ of two vector fields which are parallel along γ is constant.
In order to facilitate computations with the connection we define the action of ∇ on the basis for the tangent space in local coordinates $\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$ which we will furthermore denote $\left\{\partial_{1}, \ldots, \partial_{n}\right\}$.

$$
\begin{aligned}
& \nabla_{\partial_{i}} \partial_{j}=\Gamma_{i j}^{k} \partial_{k} \\
& \Gamma_{i j k}=g_{k l} \Gamma_{i j}^{l}
\end{aligned}
$$

$\Gamma_{i j}^{k}$ are called Christoffel symbols of the $2^{\text {nd }}$ kind and $\Gamma_{i j k}$ are called Christoffel symbols of the $1^{\text {st }}$ kind.
Lemma 3.1. The Levi-Civita connection is unique.
Proof. We will use the metric compatibility and apply this to basis vector fields.

$$
\begin{aligned}
\partial_{k} g\left(\partial_{i}, \partial_{j}\right) & =g_{i j, k} \\
& =g\left(\nabla_{\partial_{k}} \partial_{i}, \partial_{j}\right)+g\left(\partial_{i}, \nabla_{\partial_{k}} \partial_{j}\right) \\
& =g\left(\Gamma_{k i}^{l} \partial_{l}, \partial_{j}\right)+g\left(\partial_{i}, \Gamma_{k j}^{l} \partial_{l}\right) \\
& =\Gamma_{k i}^{l} g_{l j}+\Gamma_{k j}^{l} g_{i l} \\
& =\Gamma_{k i j}+\Gamma_{k j i}
\end{aligned}
$$

By the symmetry of the connection

$$
\begin{aligned}
0 & =\left[\partial_{i}, \partial_{j}\right] \\
& =\nabla_{\partial_{i}}, \partial_{j}-\nabla_{\partial_{j}} \partial_{i} \\
& =\left(\Gamma_{i j}^{k}-\Gamma_{j i}^{k}\right) \partial_{k}
\end{aligned}
$$

$\Longrightarrow \Gamma_{i j}^{k}=\Gamma_{j i}^{k}$
and summing covariant derivatives of the metric

$$
\begin{aligned}
g_{i j, k}+g_{j k, i}-g_{k i, j} & =\Gamma_{k i j}+\Gamma_{k j i}+\Gamma_{i j k}+\Gamma_{i k j}-\Gamma_{j k i}-\Gamma_{j i k} \\
& =2 \Gamma_{i j k}
\end{aligned}
$$

So the Christoffel symbols are determined by the metric and the connection is unique.
Now we define geodesics from a Riemannian geometry viewpoint as curves $\gamma:[a, b] \rightarrow M$ which have zero acceleration, or equivalently, parallel velocity vector fields $\dot{\gamma}$. Thus, the geodesic equation becomes $\nabla_{\dot{\gamma}} \dot{\gamma}$. In local coordinates, written in terms of the Christoffel symbols of the Riemmanian connection this becomes:

$$
\begin{aligned}
& \gamma(t)=\left(x^{1}(t), \ldots, x^{n}(t)\right) \\
& \dot{\gamma}(t)=\left(\dot{x}^{1}(t), \ldots, \dot{x}^{n}(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{\dot{\gamma}} \dot{\gamma} & =\nabla_{\dot{x}^{i} \partial_{i}} \dot{x}^{j} \partial_{j} \\
& =\dot{x}^{i} \dot{x}^{j} \Gamma_{i j}^{k} \partial_{k}+\ddot{x}^{k} \partial_{k} \\
& =\left(\dot{x}^{i} \dot{x}^{j} \Gamma_{i j}^{k}+\ddot{x}^{k}\right) \partial_{k}=0
\end{aligned}
$$

So the geodesic equation is

$$
\dot{\gamma}^{i} \dot{\gamma}^{j} \Gamma_{i j}^{k}+\ddot{\gamma}^{k}=0
$$

To show this is the same as the geodesic equation which we arrived at by variational methods

$$
\begin{aligned}
0 & =2 \dot{\gamma}^{i} \dot{\gamma}^{j} \Gamma_{i j}^{k}+2 \ddot{\gamma}^{k} \\
& =2 g_{l k} \ddot{\gamma}^{k}+2 g_{l k} \Gamma_{i j}^{k} \dot{\gamma}^{i} \dot{\gamma}^{j} \\
& =2 g_{l k} \ddot{\gamma}^{k}+2 \Gamma_{i j l} \dot{\gamma}^{i} \dot{\gamma}^{l} \\
& =2 g_{l k} \ddot{\gamma}^{k}-\left(g_{l i, j}-g_{i j, l}-g_{j l, i}\right) \dot{\gamma}^{i} \dot{\gamma}^{j}
\end{aligned}
$$

which agrees with our variational method up to a change of indices.

4 Jacobi's Theorem

Next we seek to know when a critical point of the length functional is in fact a minimizer. All geodesics exist and are length minimizing in a small ball around any point. We describe these geodesics by the exponential map. Let γ be a geodesic in M such that $\gamma(0)=p, \dot{\gamma}(0)=X$. Then γ has constant speed $\sqrt{g(X, X)}$. The exponential map $\exp _{p}: T_{p} M \rightarrow M$ is defined:

$$
\exp _{p}(X)=\gamma(1) \quad \exp _{p}(t X)=\gamma(t)
$$

To find when a geodesic is length minimizing, we must understand the critical points of $\exp _{p}$, so we need to know when dexp_{p} has a nontrivial kernel. Thus we define a point $q=\exp _{p}(t A)$ of a geodesic γ to be conjugate to p along γ if it is a critical value of $\exp _{p}$. With this definition we can state the main theorem regarding length minimizing geodesics.
Theorem 4.1. If γ is a minimizing geodesic then none of its interior points are conjugate points.
Before we prove this theorem we must relate conjugate points to variations of a geodesic. Let $\gamma_{\epsilon}(t)$ be a variation such that $\gamma_{0}(t)=\gamma(t), \gamma_{\epsilon}(0)=\gamma(0)$, and $\gamma_{\epsilon}(1)=\gamma(1)$. Our strategy is to assume the existence of a conjugate point along γ and show that this implies the existence of a variation γ_{ϵ} such that $\frac{\partial^{2}}{\partial \epsilon^{2}} L\left(\gamma_{\epsilon}\right)<0$. Such a variation would show γ to in fact be a locally maximizing geodesic, thus proving the theorem.

$$
\begin{gathered}
\frac{\partial}{\partial \epsilon} L\left(\gamma_{\epsilon}\right)=\int_{0}^{1} \frac{1}{2|\dot{\gamma}|} \frac{\partial}{\partial \epsilon}\langle\dot{\gamma}, \dot{\gamma}\rangle d t \\
=\int_{0}^{1} \frac{1}{2|\dot{\gamma}|} 2\left\langle\nabla_{\frac{\partial \gamma}{\partial \epsilon}} \dot{\gamma}, \dot{\gamma}\right\rangle d t \\
\frac{\partial^{2}}{\partial \epsilon^{2}} L\left(\gamma_{\epsilon}\right)=\int_{0}^{1} \frac{-1}{|\dot{\gamma}|^{2}} \frac{1}{|\dot{\gamma}|}\left\langle\nabla_{\frac{\partial \gamma}{\partial \epsilon}} \dot{\gamma}, \dot{\gamma}\right\rangle^{2}+\frac{1}{|\dot{\gamma}|}\left[\left\langle\nabla_{\frac{\partial \gamma}{\partial \epsilon}} \nabla_{\frac{\partial \gamma}{\partial \epsilon}} \dot{\gamma}, \dot{\gamma}\right\rangle+\left|\nabla_{\frac{\partial \gamma}{\partial \epsilon}} \dot{\gamma}\right|^{2}\right] d t
\end{gathered}
$$

Now call $\left.\frac{\partial \gamma}{\partial \epsilon}\right|_{\epsilon=0}=\gamma^{\prime}=X$ so that $X(0)=0$ and $X(1)=0$.
Since $\frac{\partial}{\partial \epsilon}$ and $\frac{\partial}{\partial t}$ are commuting vector fields in \mathbb{R}^{n} their pushforwards commute as $\left[\gamma_{*} \frac{\partial}{\partial \epsilon}, \gamma_{*} \frac{\partial}{\partial t}\right]=$ $\gamma_{*}\left[\frac{\partial}{\partial \epsilon}, \frac{\partial}{\partial t}\right]=0$.
This implies $0=[\dot{\gamma}, X]=\nabla_{\dot{\gamma}} X-\nabla_{X} \dot{\gamma}$.
Thus, the first term in the integral of $\left.\frac{\partial^{2}}{\partial \epsilon^{2}}\right|_{\epsilon=0} L\left(\gamma_{\epsilon}\right)$ is

$$
\frac{-1}{|\dot{\gamma}|^{3}}\left\langle\nabla_{\dot{\gamma}} X, \dot{\gamma}\right\rangle^{2}=\frac{-1}{|\dot{\gamma}|^{3}}\left(\frac{d}{d t}\langle X, \dot{\gamma}\rangle\right)^{2}
$$

To rewrite the second term of the integral we define the Riemannian curvature tensor as a map R : $T M \times T M \rightarrow T M$ defined as

$$
R(X, Y) Z=\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) Z
$$

which we can rewrite as a map $R: T M \times T M \times T M \times T M \rightarrow \mathbb{R}$ defined as

$$
R(X, Y, Z, W)=g(R(X, Y) Z, W)
$$

Now the second term of the integral can be rewritten as

$$
\begin{aligned}
\frac{1}{|\dot{\gamma}|}\left[\left\langle\nabla_{X} \nabla_{\dot{\gamma}} X, \dot{\gamma}\right\rangle+\left|\nabla_{X} \dot{\gamma}\right|^{2}\right] & =\frac{1}{|\dot{\gamma}|}\left[-\left\langle\nabla_{\dot{\gamma}} \nabla_{X} X, \dot{\gamma}\right\rangle+\langle R(X, \dot{\gamma}) X, \dot{\gamma}\rangle+\left|\nabla_{X} \dot{\gamma}\right|^{2}\right] \\
& =-\frac{d}{d t}\left\langle\nabla_{X} X, \dot{\gamma}\right\rangle+\langle R(X, \dot{\gamma}) X, \dot{\gamma}\rangle+\left|\nabla_{X} \dot{\gamma}\right|^{2}
\end{aligned}
$$

And if we rescale γ to have constant unit speed the second variational formula for the length functional becomes

$$
\left.\frac{\partial^{2}}{\partial \epsilon^{2}}\right|_{\epsilon=0} L\left(\gamma_{\epsilon}\right)=\int_{a}^{b}-\left(\frac{d}{d t}\langle X, \dot{\gamma}\rangle\right)^{2}+\langle R(X, \dot{\gamma}), X, \dot{\gamma}\rangle+\left|\nabla_{X} \dot{\gamma}\right|^{2} d t
$$

Now we consider normal fields X such that $\langle X(t), \dot{\gamma}(t)\rangle=0$ for any t. If X is normal along γ then the second variational formula becomes

$$
I_{\gamma}(X)=\left.\frac{\partial^{2}}{\partial \epsilon^{2}}\right|_{\epsilon=0} L\left(\gamma_{\epsilon}\right)=\int_{a}^{b} R(X, \dot{\gamma}, X, \dot{\gamma})+\left|\nabla_{X} \dot{\gamma}\right|^{2} d t
$$

Now we will seek minimizers of I and prove they have negative values when γ contains conjugate points. We consider I_{γ} over all vector fields along γ, which are sections of $\gamma^{*} T M$, vanishing at 0 and $1 . \gamma^{*} T M \simeq$ $[0,1] \times \mathbb{R}^{n}$ and we can make this explicit by choosing a frame for $T_{p} M$ which varies along γ. First choose $\left\{E_{1}, \ldots, E_{n}\right\}$, an orthonormal frame for $T_{\gamma(0)} M$ and extend $E_{i}(t) \in T_{\gamma(t)} M$ by the solution to $\nabla_{\dot{\gamma}} E_{i}(t)=0, E_{i}(0)=E_{i}$. It can be shown that $E_{i}(t)$ is an orthonormal frame at each point of γ.
Decomposing a vector field X along γ as $X=\sum q_{i}(t) E_{i}(t)$, and $\dot{\gamma}(t)=\sum a_{i} E_{i}(t)$. Then $\nabla_{\dot{\gamma}} X=$ $\sum \dot{q}_{i}^{2}(t) E_{i}(t)$.
Now the second variational formula for X along γ is

$$
I_{\gamma} X=\int_{a}^{b} \sum \dot{q}_{i}^{2}+R_{i j k l} q_{i} a_{j} q_{k} a_{l} d t
$$

where $R_{i j k l}=R\left(E_{i}, E_{j}, E_{k}, E_{l}\right)$.
Using the Euler-Lagrange equation for functionals of this type that we derived previously we find that the Euler-Lagrange equation for I is

$$
2 \ddot{q}_{i}=-R_{i j k l} a_{j} q_{k} a_{l}-R_{m j i l} q_{m} a_{j} a_{l}
$$

And using that $\sum \ddot{q}_{i} E_{i}=\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X$ we get the Jacobi Equation

$$
\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X+R(\dot{\gamma}, X) \dot{\gamma}=0
$$

When X satisfies this equation it is called a Jacobi field. We seek to find a normal Jacobi field X with $I(X)<0$ along a geodesic γ with a conjugate point, which will provide the contradiction needed to prove Theorem 4.1. But first we must show that any Jacobi field X with $X(0)=0$ and $X(1)=0$ can be obtained from a variation so that showing $I(X)<0$ is sufficient for proving the theorem which concerns variations rather than Jacobi fields.

Proposition 4.2. There is a bijection between variations $\gamma_{\epsilon}(t)$ which are composed of geodesics and have a fixed start point $\gamma(0)$ and Jacobi fields $X(t)$ with $X(0)=0$.

Proof. First we'll show that a variation of geodesics with a fixed start point induces a Jacobi field X with $X(0)=0$. Such a variation can be defined as $\gamma_{\epsilon}(t)=\exp _{p} t A(\epsilon)$ with $A(\epsilon) \in T_{p} M$ and $A(0)=\dot{\gamma}(0)$. The induced Jacobi field is $X(t)=\gamma_{\epsilon}^{\prime}(t)=\left.\operatorname{dexp}_{p}\right|_{t A(\epsilon)}\left(t A^{\prime}(0)\right)$. Clearly $X(0)=0$.
Now we'll show that $\gamma_{\epsilon}^{\prime}(t)$ is a Jacobi field.

$$
\begin{aligned}
& \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} \gamma^{\prime}+R\left(\gamma^{\prime}, \dot{\gamma}\right) \dot{\gamma}=0 \\
& \Longleftrightarrow \nabla_{\dot{\gamma}} \nabla_{\gamma^{\prime}} \dot{\gamma}+R\left(\gamma^{\prime}, \dot{\gamma}\right) \dot{\gamma}=0 \\
& \Longleftrightarrow \nabla_{\gamma^{\prime}} \nabla_{\dot{\gamma}} \dot{\gamma}+R\left(\dot{\gamma}, \gamma^{\prime}\right) \dot{\gamma}+R\left(\gamma^{\prime}, \dot{\gamma}\right) \dot{\gamma}=0 \\
& \Longleftrightarrow \nabla_{\gamma^{\prime}} \nabla_{\dot{\gamma}} \dot{\gamma}=0
\end{aligned}
$$

But the last line being equal to 0 is exactly the geodesic equation, so $\gamma_{\epsilon}^{\prime}$ is a Jacobi field.
Next we'll show that a Jacobi field X with $X(0)=0$ gives rise to a variation of geodesics with a fixed start point. But first we'll give an argument for why for each variation with fixed start point $\phi(t, \epsilon)=\gamma_{\epsilon}(t)=\exp _{p}(t A(\epsilon))$ which gives rise to a variational field $X(t)=\frac{\partial \phi}{\partial \epsilon}(t, 0)$ has its covariant derivative $\nabla_{\dot{\gamma}} X(0)=A^{\prime}(0)$. This relies on the fact that

$$
\nabla_{\dot{\gamma}} X(t)=\nabla_{\dot{\gamma}}\left(\left.\frac{\partial \phi}{\partial \epsilon}\right|_{\epsilon=0}\right)=\left.\left(\nabla_{\gamma^{\prime}} \dot{\gamma}_{\epsilon}(t)\right)\right|_{\epsilon=0}
$$

Where in the last equality I used the relation $\nabla_{\dot{\gamma}} \frac{\partial \phi}{\partial \epsilon}=\nabla_{\gamma^{\prime}} \frac{\partial \phi}{\partial t}$ between partial and covariant derivatives on the surface which is the image of ϕ. To see why this relation is true choose a local coordinate x for M near a point on the image of ϕ and compute

$$
\begin{aligned}
\nabla_{\dot{\gamma}}\left(\frac{\partial \phi}{\partial \epsilon}\right) & =\nabla_{\dot{\gamma}}\left(\frac{\partial x^{i}}{\partial \epsilon} \frac{\partial}{\partial x^{i}}\right) \\
& =\frac{\partial^{2} x^{i}}{\partial t \partial \epsilon} \frac{\partial}{\partial x^{i}}+\frac{\partial x^{i}}{\partial \epsilon} \nabla_{\frac{\partial x^{j}}{\partial t} \frac{\partial}{\partial x^{j}}} \frac{\partial}{\partial x^{i}} \\
& =\frac{\partial^{2} x^{i}}{\partial t \partial \epsilon} \frac{\partial}{\partial x^{i}}+\frac{\partial x^{i}}{\partial \epsilon} \frac{\partial x^{j}}{\partial t} \nabla_{\frac{\partial}{\partial x^{j}}} \frac{\partial}{\partial x^{i}}
\end{aligned}
$$

And the symmetry of the connection gives $\nabla_{\frac{\partial}{\partial x^{j}}} \frac{\partial}{\partial x^{i}}=\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}$ so a computation of $\nabla_{\gamma^{\prime}} \frac{\partial \phi}{\partial t}$ gives the same result.

Thus $\nabla_{\dot{\gamma}} X(t)=\left.\left(\nabla_{\gamma^{\prime}} \dot{\gamma}_{\epsilon}(t)\right)\right|_{\epsilon=0}$ and $\nabla_{\dot{\gamma}} X(0)=\left.\left(\nabla_{\gamma^{\prime}} A(\epsilon)\right)\right|_{\epsilon=0}$. But since at $t=0$ the the curve $\epsilon \mapsto \gamma_{\epsilon}(0)$ is constant, the covariant derivative is just a partial derivative with respect to ϵ and $\nabla_{\dot{\gamma}} X(0)=A^{\prime}(0)$.
Now that we've established that $\nabla_{\dot{\gamma}} X(0)=A^{\prime}(0)$, we continue the proof by considering an arbitrary Jacobi field with initial value 0 .
Given such an X let $B=\nabla_{\dot{\gamma}} X(0)$. Now define $A(\epsilon)=\dot{\gamma}(0)+\epsilon B$ and consider the variation $\gamma_{\epsilon}(t)=$ $\exp _{p} t A(\epsilon)$. The induced Jacobi field is $Y(t)=\gamma_{\epsilon}^{\prime}(t)=\left.\operatorname{dexp}_{p}\right|_{t A(\epsilon)}(t B)$. But $Y(0)=X(0)=0$ and $\nabla_{\dot{\gamma}} Y(0)=B=\nabla_{\dot{\gamma}} X(0)$ by the argument given above, so by the uniqueness of ordinary differential equations $X(t)=Y(t)$ and $X(t)$ is induced by a variation of geodesics with a fixed start point.

Before proving the existence of a Jacobi field with $I(X)<0$, we will first prove a helpful proposition.
Proposition 4.3. If X is a Jacobi field such that $\langle X(0), \dot{\gamma}(0)\rangle=\langle X(1), \dot{\gamma}(1)\rangle=0$ then X is a normal Jacobi field, and if furthermore $X(0)=X(1)=0$ then $I(X)=0$.

Proof. To show that X is normal we must show $\langle\dot{\gamma}, X\rangle=0$. First we note

$$
\frac{d}{d t}\langle\dot{\gamma}, X\rangle=\left\langle\dot{\gamma}, \nabla_{\dot{\gamma}} X\right\rangle
$$

And taking a further derivative

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}}\left\langle\dot{\gamma}, \nabla_{\dot{\gamma}} X\right\rangle & =\left\langle\dot{\gamma}, \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X\right\rangle \\
& =-\langle\dot{\gamma}, R(X, \dot{\gamma}) \dot{\gamma}\rangle \\
& =-R(\dot{\gamma}, \dot{\gamma}, X, \dot{\gamma})=0
\end{aligned}
$$

So $\langle\dot{\gamma}, X\rangle=a t+b$ for $a, b \in \mathbb{R}$ and by using the conditions on the endpoints we can show that $\langle\dot{\gamma}, X\rangle=0$, so X is normal. Thus, the equation for $I(\gamma)$ reduces to:

$$
\begin{aligned}
I(X) & =\int_{0}^{1}\left|\nabla_{\dot{\gamma}} X\right|^{2}-R(X, \dot{\gamma}, X, \dot{\gamma}) d t \\
& =\int_{0}^{1}\left\langle\nabla_{\dot{\gamma}} X, \nabla_{\dot{\gamma}} X\right\rangle+\left\langle X, \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} X\right\rangle d t \\
& =\int_{0}^{1} \frac{d}{d t}\left\langle X, \nabla_{\dot{\gamma}} X\right\rangle d t \\
& =\left.\left\langle X, \nabla_{\dot{\gamma}} X\right\rangle\right|_{0} ^{1}=0
\end{aligned}
$$

as the conditions on the endpoints are the same.
Now we have all of the tools necessary to prove Theorem 4.1 which states that if γ is a minimizing geodesic then none of its interior points are conjugate points.

Proof. We will prove the theorem by contradiction, assuming there exists a conjugate point at $\gamma\left(t_{0}\right)$ and showing that γ cannot be length minimizing. To this end we will show there exists a normal Jacobi field Y along γ, which by Proposition 4.2 is the variational field of some variation $\gamma_{\epsilon}(t)$, such that the second variation of $Y, I(Y)<0$ which would imply γ is locally length maximizing.
First we show the existence of a normal Jacobi field such that $X(0)=0$ and $X\left(t_{0}\right)=0$, where $\gamma\left(t_{0}\right)$ is the conjugate point to $\gamma(0)$. Since $\gamma\left(t_{0}\right)$ is conjugate, there exists $A(\epsilon) \in T_{p} M$ such that $A^{\prime}(0) \in \operatorname{ker}\left(\left.\operatorname{dexp}\right|_{t_{0} A}\right)$, and defining $X(t)=\operatorname{dexp} p_{t A(\epsilon)}\left(t A^{\prime}(t)\right)$ gives the desired Jacobi field. And by Proposition 4.3 it is normal on $\left[0, t_{0}\right]$ and has $I(X)=0$ on that interval.
Around every point in a Riemannian manifold the exponential map is a diffeomorphism from a small ball in the tangent space to a small normal neighborhood in the manifold. Thus there exists $\delta>0$ such that
the exponential map is a diffeomorphism on $B(0, \delta) \subset T_{\gamma\left(t_{0}\right)} M$. Thus $\exp _{\gamma\left(t_{0}\right)}$ cannot have any critical points in the interval, so none of the points on $\left.\gamma\right|_{\left[t_{0}-\delta, t_{0}+\delta\right]}$ are conjugate to $\gamma\left(t_{0}-\delta\right)$. Now we seek to prove the existence of a Jacobi field $Z(t)$ on $\left[t_{0}-\delta, t_{o}+\delta\right]$ such that $Z\left(t_{0}-\delta\right)=X\left(t_{0} \delta\right)$ and $Z\left(t_{0}+\delta\right)=0$.
We first note that since the Jacobi equation is an system of n second-order ordinary differential equations, its solution set is 2n-dimensional. Next, we consider the linear map $\alpha: X \mapsto\left(X\left(t_{0}-\delta\right), X\left(t_{0}+\delta\right)\right)$ from the 2 n-dimensional space of Jacobi fields to the 2 n-dimensional space $T_{\gamma\left(t_{0}-\delta\right)} M \oplus T_{\gamma\left(t_{0}+\delta\right)} M$. It is injective as it is a homomorphism of vector spaces and the only Jacobi field which has both endpoints 0 is the unique solution $X(t)=0$ of the Jacobi equation with those initial conditions. But since the dimension of the domain and codomain are both 2 n it is surjective as well. Thus there exists a Jacobi field Z with the perscribed endpoints. By Proposition $4.3 Z$ is normal.
Before we define our final Jacobi field which will satisfy $I(Y)<0$, we will first show that the Jacobi field Z defined above is minimal in the sense that $I(Z)<I(W)$ where W is any other piecewise smooth field along γ. Since Z is normal, it can be written as an \mathbb{R}-linear combination of of $\left\{W_{1}, \ldots, W_{n-1}\right\}$, a basis for the subspace of normal Jacobi fields. A computation shows that for a smooth field $W=f^{i} W_{i}$, where now f^{i} are smooth functions, I can be written.

$$
I(W)=\int_{0}^{1}\left|\dot{f}^{i} W_{i}\right|^{2} d t+\left.f^{i}(1) f^{j}(1)\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle\right|_{t=1}
$$

And since Z is normal, the f^{i} s are constant, and the formula reduces to.

$$
I(Z)=\left.f^{i}(1) f^{j}(1)\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle\right|_{t=t_{0}+\delta}
$$

Thus for any smooth field W which agrees with Z on $t_{0}-\delta$ and $t_{0}+\delta$ we have

$$
I(W)-I(Z)=\int_{t_{0}-\delta}^{t_{0}+\delta}\left|\dot{f}^{i} W_{i}\right|^{2} d t \geq 0
$$

And so Z is strictly minimal amongst smooth fields with the same endpoints.
Now define the Jacobi field Y on all of γ by

$$
Y(t)= \begin{cases}X(t) & t \in\left[0, t_{0}-\delta\right] \\ Z(t) & t \in\left[t_{0}-\delta, t_{0}+\delta\right] \\ 0 & t \in\left[t_{0}+\delta, 1\right]\end{cases}
$$

And we compute

$$
\begin{aligned}
I_{0}^{1}(Y)=I_{0}^{t_{0}+\delta}(Y) & =I_{0}^{t_{0}-\delta}(X)+I_{t_{0}-\delta}^{t_{0}+\delta}(Z) \\
& =I_{0}^{t_{0}}(X)-I_{t_{0}-\delta}^{t_{0}}(X)+I_{t_{0} \delta}^{t_{0}+\delta}(Z) \\
& =I_{t_{0}-\delta}^{t_{0}+\delta}(Z)-I_{t_{0}-\delta}^{t_{0}}
\end{aligned}
$$

And Z is minimal by the argument above, so for a field defined

$$
W(t)= \begin{cases}X(t) & t \in\left[t_{0}-\delta, t_{0}\right] \\ 0 & t \in\left[t_{0}, t_{0}+\delta\right]\end{cases}
$$

W and Z have the same endpoints, so $I(Z)<I(W)$, and since $I_{t_{0}-\delta, t_{0}}^{t_{0}}(X)=I_{t_{0}-\delta}^{t_{0}+\delta}(W)$, it follows that $I_{0}^{1}(Y)<0$, contradicting the fact that γ was length minimizing.

Geometric Analysis Homework 1

The first four exercises are taken from Geometry VI: Riemannian Geometry by M.M. Postnikov.
Exercise 11.3 Prove that parallel translation with respect to a Riemannian connection is an isometric mapping of tangent spaces.

Proof. Let $X(t)$ and $Y(t)$ be parallel vector fields along γ so that $\nabla_{\dot{\gamma}(t)} X(t)=\nabla_{\dot{\gamma}(t)} Y(t)=0$. To prove parallel translation is an isometry we must show $\langle X(t), Y(t)\rangle$ is constant.

$$
\frac{d}{d t}\langle X(t), Y(t)\rangle=\left\langle\nabla_{\dot{\gamma}(t)} X(t), Y(t)\right\rangle+\left\langle X(t), \nabla_{\dot{\gamma}(t)} Y(t)\right\rangle=0
$$

Thus parallel translation is an isometry.
Exercise 11.4 Prove that the matrix for the Lagrangian L on $T M$ with local coordinates $\left(q^{1}, \ldots, q^{n}, \dot{q}^{1}, \ldots, \dot{q}^{n}\right)$ given by

$$
\left[\frac{\partial^{2} L}{\partial \dot{q}^{i} \partial \dot{q}^{j}}\right]
$$

does not depend on the choice of local coordinates.
Proof. Let ϕ be a change of coordinates such that $\phi(q)=p$. This induces a change of coordinates on the tangent space by $\dot{p}=(d \phi)^{-1} \dot{q}$ and more specifically $\dot{p}_{i}=\left(d \phi^{-1}\right)_{j i} \dot{q}_{j}$. Thus $\frac{\partial \dot{p}_{i}}{\partial \dot{q}^{j}}=\left(d \phi^{-1}\right)_{j i}$ and $\frac{\partial^{2} \dot{p}_{i}}{\partial \dot{q}^{j} \partial \dot{q}^{k}}=0$. Under the change of coordinates L changes as

$$
L(q, \dot{q})=L\left(\phi^{-1}(p), d \phi(\dot{p})\right)=G(p, \dot{p})
$$

And the partial derivatives of L change as

$$
\frac{\partial L}{\partial \dot{q}_{i}}=\frac{\partial G}{\partial \dot{p}_{k}} \frac{\partial \dot{p}_{k}}{\partial \dot{q}_{i}}
$$

$$
\begin{aligned}
\frac{\partial^{2} L}{\partial \dot{q}_{i} \partial \dot{q}_{j}} & =\frac{\partial}{\partial \dot{q}^{j}}\left(\frac{\partial G}{\partial \dot{p}_{k}} \frac{\partial \dot{p}_{k}}{\partial \dot{q}_{i}}\right) \\
& =\frac{\partial G}{\partial \dot{p}_{k}} \frac{\partial^{2} \dot{p}_{k}}{\partial \dot{q}_{i} \partial \dot{q}_{j}}+\frac{\partial^{2} G}{\partial \dot{p}_{k} \partial \dot{p}_{l}} \frac{\partial \dot{p}_{l}}{\partial \dot{q}_{j}} \frac{\partial \dot{p}_{k}}{\partial \dot{q}_{i}} \\
& =\frac{\partial^{2} G}{\partial \dot{p}_{k} \partial \dot{p}_{l}} \frac{\partial \dot{p}_{l}}{\partial \dot{q}_{j}} \frac{\partial \dot{p}_{k}}{\partial \dot{q}_{i}} \\
& =\frac{\partial^{2} L}{\partial \dot{p}_{k} \partial \dot{p}_{l}}\left(\frac{\partial \dot{q}_{j}}{\partial \dot{p}_{i}} \frac{\partial \dot{q}_{i}}{\partial \dot{p}_{j}}\right)\left(\frac{\partial \dot{p}_{l}}{\partial \dot{q}_{j}} \frac{\partial \dot{p}_{k}}{\partial \dot{q}_{i}}\right) \\
& =\frac{\partial^{2} L}{\partial \dot{p}_{k} \partial \dot{p}_{l}} \delta_{i}^{l} \delta_{j}^{k} \\
& =\frac{\partial^{2} L}{\partial \dot{p}_{j} \partial \dot{p}_{i}}
\end{aligned}
$$

So $\left[\frac{\partial^{2} L}{\partial \dot{q}^{2} \partial \dot{q}^{j}}\right]$ does not depend on the choice of local coordinates.
Exercise 12.2 Prove that a geodesic remains a geodesic under a reparameterization iff this reparameterization is linear (has the form $t \mapsto a t+b$, where $a \neq 0$).

Proof. Consider a reparameterization $s=g(t)$ for the geodesic $\gamma(s)$. Now put the reparameterized curve $\gamma(g(t))$ into the geodesic equation.

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}} \gamma^{i}(g(t))+\Gamma_{k j}^{i}(\gamma(g(t))) \frac{d}{d t} \gamma^{j}(t) \frac{d}{d t} \gamma^{k}(t) \\
& =\ddot{\gamma}^{i}(g(t))\left(g^{\prime}(t)\right)^{2}+\dot{\gamma}^{i}(g(t)) g^{\prime \prime}(t)+\Gamma_{k j}^{i}\left(\gamma \left(g(t) \dot{\gamma}^{j}(g(t)) \dot{\gamma}^{k}(g(t))\left(g^{\prime}(t)\right)^{2}\right.\right. \\
& =\dot{\gamma}^{i}(s) g^{\prime \prime}(t)+\left[\ddot{\gamma}^{i}(s)+\Gamma_{k j}^{i}\left(\gamma(s) \dot{\gamma}^{j}(s) \dot{\gamma}^{k}(s)\right] g^{\prime \prime}(t)\right. \\
& =\dot{\gamma}^{i}(s) g^{\prime \prime}(t)
\end{aligned}
$$

Where the last equality is because $\gamma(s)$ is a geodesic. Since $\dot{\gamma}^{i}(s) \neq 0, \gamma(g(t))$ is a geodesic iff $g^{\prime \prime}(t)=0$ iff $g(t)=a t+b$ for $a, b \in \mathbb{R}$ and $a \neq 0$.

Exercise 27.1 Show that for any piecewise smooth field X on the geodesic γ, the inequality

$$
I_{0}^{1}\left(X^{\perp}\right) \leq I_{0}^{1}(X)
$$

holds, where X^{\perp} is the normal component of the field X (i.e., $X(t)-X^{\perp}(t)$ is collinear to the vector $\dot{\gamma}(t)$ for every $t)$.

Proof. Assuming $\gamma:[a, b] \rightarrow M$ is a unit speedgeodesic, let $\left\{\dot{\gamma}(a)=A_{1}, A_{2}, \ldots, A_{n}\right\}$ be an orthonormal basis for $T_{\gamma(a)} M$. Parallel transporting each of these vectors along γ based on the unique solution to the differential equation $\nabla_{\dot{\gamma}(t)} X_{i}(t)=0, X_{i}(0)=A_{i}$ yields an orthonormal frame along γ with $X_{1}(t)=\dot{\gamma}(t)$. Thus, any smooth vector field X along γ can be written as $X=\sum_{i=1}^{n} f^{i} X_{i}$ for f^{i} smooth functions. Then $X^{\perp}=\sum_{i=2}^{n} f^{i} X_{i}$ as X^{\perp} has no component parallel to $X_{1}=\dot{\gamma}$. On smooth vector fields $I(x)$ is given by

$$
\int_{a}^{b}\left[\left\langle\nabla_{\dot{\gamma}} X, \nabla_{\dot{\gamma}} X\right\rangle-R(X, \dot{\gamma}, X, \dot{\gamma})-\left\langle\nabla_{\dot{\gamma}} X, \dot{\gamma}\right\rangle^{2}\right] d t
$$

Examining the first term in the integral we see

$$
\begin{aligned}
\left\langle\nabla_{\dot{\gamma}} X, \nabla_{\dot{\gamma}} X\right\rangle & =\left\langle\nabla_{\dot{\gamma}} f^{i} X_{i}, \nabla_{\dot{\gamma}} f^{j} X_{j}\right\rangle \\
& =\left\langle\dot{f}^{i} X_{i}+f^{i} \nabla_{\dot{\gamma}} X_{i}, \dot{f}^{j} X_{j}+f^{j} \nabla_{\dot{\gamma}} X_{j}\right\rangle \\
& =\sum\left|\dot{f}^{i}\right|^{2}
\end{aligned}
$$

And comparing X to X^{\perp} we see

$$
\int_{a}^{b}\left\langle\nabla_{\dot{\gamma}} X, \nabla_{\dot{\gamma}} X\right\rangle d t-\int_{a}^{b}\left\langle\nabla_{\dot{\gamma}} X^{\perp}, \nabla_{\dot{\gamma}} X^{\perp}\right\rangle d t=\int_{a}^{b}\left|\dot{f}^{1}\right|^{2} d t
$$

Examining the second term in the integral, since $R(X, Y, Z, Z)=0$ by the symmetries of the curvature tensor, it follows that $R\left(f^{i} X_{i}, \dot{\gamma}, f^{1} X_{1}, \dot{\gamma}\right)=R\left(f^{i} X_{i}, \dot{\gamma}, f^{1} X_{1}, X_{1}\right)=0$. Thus $R(X, \dot{\gamma}, X, \dot{\gamma})=$ $R\left(X^{\perp}, \dot{\gamma}, X^{\perp}, \dot{\gamma}\right)$ and their difference contributes nothing to the integral.
Examining the third term in the integral we see

$$
\begin{aligned}
\left\langle\nabla_{\dot{\gamma}} X, \dot{\gamma}\right\rangle^{2} & =\left\langle f^{i} X_{i}, X_{1}\right\rangle^{2} \\
& =\left|f^{1}\right|^{2}
\end{aligned}
$$

And comparing X to X^{\perp} we see

$$
-\int_{a}^{b}\left\langle\nabla_{\dot{\gamma}} X, \dot{\gamma}\right\rangle^{2} d t-\left(-\int_{a}^{b}\left\langle\nabla_{\dot{\gamma}} X^{\perp}, \dot{\gamma}\right\rangle^{2} d t\right)=-\left|f^{1}\right|^{2}
$$

So together

$$
I(X)-I\left(X^{\perp}\right)=\int_{a}^{b}\left|f^{1}\right|^{2}-\left|f^{1}\right|^{2} d t=0
$$

Exercise 5 Prove that the Jacobi field Z from the proof of Theorem 4.1 from the notes on Lectures 1-4 is normal.

Proof. The Jacobi field $Z(t)$, which is defined on $\left[t_{0}-\delta, t_{0}+\delta\right]$ has the property that $Z\left(t_{0}-\delta\right)=$ $X\left(t_{0}-\delta\right)$ where X is a normal Jacobi field on $\left[0, t_{0}\right]$, and $Z\left(t_{0}+\delta\right)=0$. Thus $\left\langle Z\left(t_{0}-\delta\right), \dot{\gamma}\left(t_{0}-\delta\right)\right\rangle=$ $\left\langle X\left(t_{0}-\delta\right), \dot{\gamma}\left(t_{0}-\delta\right)\right\rangle=0$ as X was already shown to be normal. Likewise $\left\langle Z\left(t_{0}+\delta\right), \dot{\gamma}\left(t_{0}+\delta\right)\right\rangle=$ $\left\langle 0, \dot{\gamma}\left(t_{0}+\delta\right)\right\rangle=0$.
By Proposition $4.3 Z$ must be minimal.
Exercise 6 Prove that the normal Jacobi field Z from the proof of Theorem 4.1 from the note on Lectures $1-4$ is minimal.
Before beginning the proof of the minimality of Z I will state and prove a lemma.
Lemma 0.1. For any smooth normal vector field $W=f^{i} W_{i}$ written in terms of an orthonormal basis $\left\{W_{1}, \ldots, W_{n-1}\right\}$ for the space of normal Jacobi fields with a prescribed final value. If $W(1)=0$ we can write $I(W)$ as

$$
I(W)=\int_{0}^{1}\left|\dot{f}^{i} W_{i}\right|^{2} d t-\left.f^{i}(0) f^{j}(0)\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle\right|_{t=0}
$$

Proof. The formula for I of a normal vector field is as shown in the notes

$$
I(W)=\int_{0}^{1}\left[\left\langle\nabla_{\dot{\gamma}} W, \nabla_{\dot{\gamma}} W\right\rangle-R(W, \dot{\gamma}, W, \dot{\gamma})\right] d t
$$

Computing the first term

$$
\begin{aligned}
\left\langle\nabla_{\dot{\gamma}} W, \nabla_{\dot{\gamma}} W\right\rangle & =\left\langle\dot{f}^{i} W_{i}+f^{i} \nabla_{\dot{\gamma}} W_{i}, \dot{f}^{j} W_{j}+f^{j} \nabla_{\dot{\gamma}} W_{j}\right\rangle \\
& =\left|\dot{f}^{i} W_{i}\right|^{2}+2 \dot{f}^{i} f^{j}\left\langle W_{i}, \nabla_{\dot{\gamma}} W_{j}\right\rangle+f^{i} f^{j}\left\langle\nabla_{\dot{\gamma}} W_{i}, \nabla_{\dot{\gamma}}, W_{j}\right\rangle
\end{aligned}
$$

Computing the second term

$$
\begin{aligned}
R(W, \dot{\gamma}, W \dot{\gamma}) & =f^{i} f^{j}\left\langle R\left(W_{i}, \dot{\gamma}\right) \dot{\gamma}, W_{j}\right\rangle \\
& =-f^{i} f^{j}\left\langle\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle
\end{aligned}
$$

Where the last equality is because of the Jacobi equation applied to W_{i}. Noting

$$
\frac{d}{d t}\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle=\left\langle\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle+\left\langle\nabla_{\dot{\gamma}} W_{i}, \nabla_{\dot{\gamma}} W_{j}\right\rangle
$$

We see that

$$
\left\langle\nabla_{\dot{\gamma}} W, \nabla_{\dot{\gamma}} W\right\rangle-R(W, \dot{\gamma}, W, \dot{\gamma})=\left|\dot{f}^{i} W_{i}\right|^{2}+2 \dot{f}^{i} f^{j}\left\langle W_{i}, \nabla_{\dot{\gamma}} W_{j}\right\rangle+f^{i} f^{j} \frac{d}{d t}\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle
$$

Also we have

$$
\frac{d}{d t}\left\langle f^{i} \nabla_{\dot{\gamma}} W_{i}, f^{j} W_{j}\right\rangle=\dot{f}^{i} f^{j}\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle+f^{j} \dot{f}^{i}\left\langle\nabla_{\dot{\gamma}} W_{j}, W_{i}\right\rangle+f^{i} f^{j} \frac{d}{d t}\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle
$$

So we see that,

$$
\left\langle\nabla_{\dot{\gamma}} W, \nabla_{\dot{\gamma}} W\right\rangle-R(W, \dot{\gamma}, W, \dot{\gamma})=\left|\dot{f}^{i} W_{i}\right|^{2}+\dot{f}^{i} f^{j}\left[\left\langle W_{i}, \nabla_{\dot{\gamma}} W_{j}\right\rangle+\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle\right]+\frac{d}{d t}\left\langle f^{i} \nabla_{\dot{\gamma}} W_{i}, f^{j} W_{j}\right\rangle
$$

Now to show that the middle term of the right hand side is zero

$$
\begin{aligned}
\frac{d}{d t}\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle & =\left\langle\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle+\left\langle\nabla_{\dot{\gamma}} W_{i}, \nabla_{\dot{\gamma}} W_{j}\right\rangle \\
& =\left\langle\nabla_{\dot{\gamma}} W_{i}, \nabla_{\dot{\gamma}} W_{j}\right\rangle-R\left(W_{j}, \dot{\gamma}, W_{i}, \dot{\gamma}\right)
\end{aligned}
$$

And likewise

$$
\frac{d}{d t}\left\langle W_{i}, \nabla_{\dot{\gamma}} W_{j}\right\rangle=\left\langle\nabla_{\dot{\gamma}} W_{i}, \nabla_{\dot{\gamma}} W_{j}\right\rangle-R\left(W_{j}, \dot{\gamma}, W_{i}, \dot{\gamma}\right)
$$

And examining the middle term of the previous expansion

$$
\frac{d}{d t}\left[\left\langle W_{i}, \nabla_{\dot{\gamma}} W_{j}\right\rangle-\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle\right]=0
$$

So it is equal to a constant, but since $W_{i}(1)=W_{j}(1)=0$ the whole term is equal to 0 . And we can simplify

$$
\left\langle\nabla_{\dot{\gamma}} W, \nabla_{\dot{\gamma}} W\right\rangle-R(W, \dot{\gamma}, W \dot{\gamma})=\left|\dot{f}^{i} W_{i}\right|^{2}+\frac{d}{d t}\left\langle f^{i} \nabla_{\dot{\gamma}} W_{i}, f^{j} W_{j}\right\rangle
$$

And integrating from 0 to 1 gives the desired result

Now we return to the proof of the minimality of Z.
Proof. Z is in particular a smooth normal field, so it can be written in terms of an orthonormal basis $\left\{W_{1}, \ldots, W_{n-1}\right\}$ for the space of normal Jacobi fields with perscribed initial value $Z\left(t_{0}-\delta\right)=X\left(t_{0}-\delta\right)$. Let $Z(t)=f^{i} W_{i}$. Since Z is a Jacobi field, it is a solution of the Jacobi equation. Evaluating the Jacobi equation for $f^{i} W_{i}$ and using the fact that each W_{i} satisfies the Jacobi equation gives

$$
\begin{aligned}
0=\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}}\left(f^{i} W_{i}\right)+R\left(\dot{\gamma}, f^{i} W_{i}\right) \dot{\gamma} & =\nabla_{\dot{\gamma}}\left(\dot{f}^{i} W_{i}+f^{i} \nabla_{\dot{\gamma}} W_{i}\right)+f^{i} R\left(\dot{\gamma}, W_{i}\right) \dot{\gamma} \\
& =\ddot{f}^{i} W_{i}+2 \dot{f}^{i} \nabla_{\dot{\gamma}} W_{i}+f^{i} \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} W_{i}+f^{i} R\left(\dot{\gamma}, W_{i}\right) \dot{\gamma} \\
& =\ddot{f}^{i} W_{i}+2 \dot{f}^{i} \nabla_{\dot{\gamma}} W_{i}
\end{aligned}
$$

This implies that $\dot{f}^{i}=0 \quad \forall i$. If not, then $\nabla_{\dot{\gamma}} W_{i}$ would be some multiple of W_{i} which would contradict the fact that $Z\left(t_{0}+\delta\right)=0$. Thus f^{i} is a constant for each i.
By the lemma, $I(W)$ can be written

$$
I(W)=\int_{0}^{1}\left|\dot{f}^{i} W_{i}\right|^{2} d t-\left.f^{i}(0) f^{j}(0)\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle\right|_{t=0}
$$

And for $Z=f^{i} W_{i}$ where the coefficients are constant the formula reduces to

$$
I(Z)=-\left.f^{i}\left(t_{0}-\delta\right) f^{j}\left(t_{0}-\delta\right)\left\langle\nabla_{\dot{\gamma}} W_{i}, W_{j}\right\rangle\right|_{t=t_{0}-\delta}
$$

And for any smooth field $W=g^{i} W_{i}$ which agrees with Z on $t_{0}-\delta$ and $t_{0}+\delta$ we have

$$
I(W)-I(Z)=\int_{t_{0}-\delta}^{t_{0}+\delta}\left|\dot{g}^{i} W_{i}\right|^{2} d t \geq 0
$$

So Z is strictly minimal amongst smooth fields with the same endpoints.

