Geometric Analysis: Lectures 1-4

1 Basics of Differentiable Manifolds

A differentiable manifold M is a topological space which is locally homeomorphic to an open subset of
R™ and whose transition functions are smooth maps between these open subsets. Using the transition
functions we can give coordinates around a point in the manifold. These coordinates will usually be
denoted {z1(+),z2(+),...,zn(-)} so that z(p) = (0,...,0).

The tangent space at each point p € M, denoted T}, M, is an n-dimensional vector space spanned by the
vectors { 6%1, e Bw }. The inner product on this tangent space is given by the metric g at the point p.
For any vectors X,Y € T, M the inner product is denoted ¢g(X,Y, p). For any point ¢ in a neighborhood of

p the metric can be written as a matrix with coefficients g;;(q) = g(ai , %, q). We require the functions

gij to vary smoothly in the coordinate neighborhood on which they’re defined.

The metric can be used to measure the length of differentiable curves v : [a,b] — M with velocity vector
fields ’}/(t) S T’y(t)M

b
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A natural question to ask is what curves minimize length between fixed endpoints v(a), v(b) in (M, g).

2 The Euler-Lagrange Equation of the Length Functional

For a given differentiable manifold the tangent bundle 7'M is a manifold whose points are (p, X) where
X € T,M. If M is n-dimensional T'M is 2n-dimensional, accounting for both the dimesion of M and
T,M. A basic example is for the circle M = S which has T,M = R at every point, and TM = S x R.

We define a Lagrangian on M to be a smooth function on the tangent bundle T'M.

Thus L(v) is a Lagrangian as it only depends on the points (y(t),%(t)) € TM. We now seek to find the
critical points of the length functional L by computing its Euler-Lagrange Equation.

Let 7 : [a,b] = M be a one-parameter family of curves with fixed endpoints v.(a) = y(a), v.(b) = ~v(b),
Yo = 7, and v.(t) C* in € and t.

If v is a critical point of the length function L then for any one-parameter family 7., %t:o L(~ve) =0.

To compute the above derivative and derive the Euler-Lagrange equation we first define coordinates
{z1,...,2,} on an open neighborhood U, C M of a point p and coordinates {p1,...,pn} on the tangent
space so that for an arbitrary Lagrangian [ F(v,%) we can compute
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After integrating by parts
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Thus %k:o F(v.) = 0 imples
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which is the Euler-Lagrange equation of [ F(¥,7). Now we compute the Euler-Lagrange equation for the
specific case of the energy functional F which has the same critical points as the length functional L.

E(v,%) = gud* )3 (t)

suppressing the summation over repeated indices. The FEuler-Lagrange equation becomes:
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By using the symmetry that g;; = g;;, reindexing and combining the ¥ terms, and rewriting
we get
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Thus a curve 7y is a critical point of the energy functional E, and thus a critical point of the length
functional L, if it is a solution to this differential equation. Next we will show that this is the same
geodesic equation that arises in differential geometry.

3 Geodesics from a Riemannian Geometry Viewpoint

Let (M, g) be a Riemannian manifold. The geodesic equation can also be derived by considering what
it means for a curve to have zero acceleration in a manifold. The vector field ¥ is a well defined first
derivative for a curve -y, but in order to have a well defined second derivative we must define a connection
on M which will allow us to differentiate one vector field along another. An affine connection on M is a
map V : TM x TM — TM satisfying two conditions.

l)Vax+byZ = CLVXZ + beZ
2)Vx(aY)=aVxY +da(X)Y =aVxY + X(a)Y

for X, Y, Z sections of TM and a, b smooth functions on M

The Levi-Civita connection or Riemannian connection is an affine connection with the added properties
of being symmetric and compatible with the metric.



IVxY —VyX =[X,Y]
HXg(X,Y) =g(VxY, X) +g(Y,VxZ)
With the Levi-Civita connection we can define a vector field X to be parallel along a curve + if it satisfies

V5w X (t) = 0. Because of the compatibility of V with the metric g, the inner product g(X(t),Y (t)) of
two vector fields which are parallel along ~ is constant.

In order to facilitate computations with the connection we define the action of V on the basis for the
tangent space in local coordinates {8%17 e %} which we will furthermore denote {01,...,0,}.

Vo,0; = T0k
Lk = gl
Ffj are called Christoffel symbols of the 27¢ kind and ;i are called Christoffel symbols of the 1°¢ kind.

Lemma 3.1. The Levi-Civita connection is unique.

Proof. We will use the metric compatibility and apply this to basis vector fields.

9(9i,05) = Gijk
= 9(Va,0i,0;) + g(0i, Va,0;)
= g(T}i01, 0;) + g(0;, T;01)
= T905 + Tlyga
= Tkij + Liji

By the symmetry of the connection

0= [0;,04]

= Vo,,0; —V,0;

= (T = T5:)0
= Ffj = F?i
and summing covariant derivatives of the metric

Gijk T ik — Gkij = Ukij + Trjs +Tije + Ding — Tjge — Djax
= 20k

So the Christoffel symbols are determined by the metric and the connection is unique. O
Now we define geodesics from a Riemannian geometry viewpoint as curves 7 : [a,b] — M which have
zero acceleration, or equivalently, parallel velocity vector fields 4. Thus, the geodesic equation becomes

V4%. In local coordinates, written in terms of the Christoffel symbols of the Riemmanian connection this
becomes:



Vi = Viig, 1 0;
= &'@IT,0, + &0
= (&"3'T}; + )0 = 0

So the geodesic equation is

VTS + 4% =0

To show this is the same as the geodesic equation which we arrived at by variational methods

0=2%" 'yJFk + 25k
= 295" + 2911 n 47
= 2015" + 20s07' '
= 206" — (quij — Giju — gj1.0)Y'3

which agrees with our variational method up to a change of indices.

4 Jacobi’s Theorem

Next we seek to know when a critical point of the length functional is in fact a minimizer. All geodesics
exist and are length minimizing in a small ball around any point. We describe these geodesics by the
exponential map. Let v be a geodesic in M such that v(0) = p, 4(0) = X. Then ~ has constant speed
Vv 9(X, X). The exponential map exp, : T,M — M is defined:

expy(X) =~(1) exp,(tX) = ~(t)

To find when a geodesic is length minimizing, we must understand the critical points of exp,, so we need
to know when dexp, has a nontrivial kernel. Thus we define a point ¢ = exp,(tA) of a geodesic v to be
conjugate to p along +y if it is a critical value of exp,. With this definition we can state the main theorem
regarding length minimizing geodesics.

Theorem 4.1. If v is a minimizing geodesic then none of its interior points are conjugate points.

Before we prove this theorem we must relate conjugate points to variations of a geodesic. Let ~.(t)
be a variation such that vo(t) = v(t), 7.(0) = ¥(0), and (1) = ¥(1). Our strategy is to assume the
existence of a conjugate point along « and show that this implies the existence of a variation 7, such that
02

%L(%) < 0. Such a variation would show ~ to in fact be a locally maximizing geodesic, thus proving
the theorem.
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Now call a—z

=+ = X so that X(0) =0 and X (1) =0.
0

Sincg % and % are commuting vector fields in R™ their pushforwards commute as ['y*%,'y* %] =
¥ (50 5] =0
This implies 0 = [¥, X| = V45X — Vx7?.

Thus, the first term in the integral of 59—:2 L(v.) is
0
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To rewrite the second term of the integral we define the Riemannian curvature tensor as a map R :
TM x TM — TM defined as

R(X,Y)Z = (VXVY - VyVx — V[Xy]) Z
which we can rewrite as a map R: TM x TM x TM x TM — R defined as
R(X,Y,Z,W) = g(R(X,Y)Z,W)

Now the second term of the integral can be rewritten as

1 ) . 1 . o .
Tl [<VXVﬁX7’Y> + Ivaﬂ = [— (V5 Vx X, %) + (R(X, %)X, ) + Vx5

d . . : :
— — 2 (VxX,A) + (R A)X,A) + VAl

And if we rescale v to have constant unit speed the second variational formula for the length functional
becomes

82
oe?

b d 2 )
) — - . a. 7.7 a. ) d
R / ( <Xv>> T ROXLA), XA + [V dt

dt

Now we consider normal fields X such that (X(t),4(¢t)) = 0 for any ¢. If X is normal along ~ then the
second variational formula becomes

62

I’Y(X) = @

b
L(v) = / ROX. 5, X,4) + [V x4 dt

e=0

Now we will seek minimizers of I and prove they have negative values when ~ contains conjugate points.
We consider I, over all vector fields along v, which are sections of v*T'M, vanishing at 0 and 1. v*T'M ~
[0,1] x R™ and we can make this explicit by choosing a frame for T,M which varies along 7. First
choose {E1,...,E,}, an orthonormal frame for T, o)M and extend E;(t) € T, M by the solution to
V4E;(t) =0, E;(0) = E;. It can be shown that E;(t) is an orthonormal frame at each point of ~.

Decomposing a vector field X along v as X = Zqi(t)Ei(t), and 4(t) = ZaiEi(t). Then V3 X =
D@ E().

Now the second variational formula for X along -y is

b
I, X :/ ZQ? + Riji qiajqrar dt
a



where R = R(E;, Ej, By, Ey).

Using the Euler-Lagrange equation for functionals of this type that we derived previously we find that
the Euler-Lagrange equation for I is

2G; = —Rijri ajqra; — Rja qmaja

And using that Z GiE; = V4 V45X we get the Jacobi Equation

ViViX + R(Y,X)y=0

When X satisfies this equation it is called a Jacobi field. We seek to find a normal Jacobi field X with
I(X) < 0 along a geodesic vy with a conjugate point, which will provide the contradiction needed to prove
Theorem 4.1. But first we must show that any Jacobi field X with X(0) = 0 and X (1) = 0 can be
obtained from a variation so that showing I(X) < 0 is sufficient for proving the theorem which concerns
variations rather than Jacobi fields.

Proposition 4.2. There is a bijection between variations v.(t) which are composed of geodesics and have

a fized start point ¥(0) and Jacobi fields X (t) with X (0) = 0.

Proof. First we’ll show that a variation of geodesics with a fixed start point induces a Jacobi field X with
X (0) = 0. Such a variation can be defined as 7.(t) = exp,tA(e) with A(e) € T,M and A(0) = 4(0). The
induced Jacobi field is X (t) = ~.(t) = dexpp|tA(6) (tA’(0)). Clearly X (0) = 0.

Now we’ll show that v/(t) is a Jacobi field.
ViViy + R(Y,9)y =0
= V;Vyy+ R0, 9)7=0
= VyViy+ R(3,7)7+ R(Y,9)7 =0
= V,Viyy=0
But the last line being equal to 0 is exactly the geodesic equation, so 7. is a Jacobi field.

Next we’ll show that a Jacobi field X with X (0) = 0 gives rise to a variation of geodesics with a
fixed start point. But first we’ll give an argument for why for each variation with fixed start point
o(t,e) = ve(t) = expp(tA(e)) which gives rise to a variational field X (¢) = %‘f(t,()) has its covariant
derivative VX (0) = A’(0). This relies on the fact that

0
V;YX(t) = V-’Y <a(i)

) = (VA
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Where in the last equality I used the relation Vﬁg—f = Vy%—f between partial and covariant derivatives
on the surface which is the image of ¢. To see why this relation is true choose a local coordinate x for
M near a point on the image of ¢ and compute
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And the symmetry of the connection gives V _a_ a?ci =V_ o % so a computation of Vy%‘f gives the
oxd dx?

same result.



Thus V5 X(t) = (Vy5e(t))],_o and V4 X(0) = (V. A(e))|,_,- But since at ¢ = 0 the the curve € — 7,(0)
is constant, the covariant derivative is just a partial derivative with respect to e and V;X(0) = A’(0).

Now that we’ve established that V;X(0) = A’(0), we continue the proof by considering an arbitrary
Jacobi field with initial value 0.

Given such an X let B = V;,X(0). Now define A(e) = 4(0) + B and consider the variation 7.(t) =
expptA(e). The induced Jacobi field is Y (t) = ~.(t) = dexpp|tA(6) (tB). But Y(0) = X(0) = 0 and
V;,Y(0) = B = V4X(0) by the argument given above, so by the uniqueness of ordinary differential
equations X (¢t) = Y (¢) and X () is induced by a variation of geodesics with a fixed start point. O

Before proving the existence of a Jacobi field with I(X) < 0, we will first prove a helpful proposition.

Proposition 4.3. If X is a Jacobi field such that (X (0),%(0)) = (X(1),%(1)) = 0 then X is a normal
Jacobi field, and if furthermore X (0) = X (1) =0 then I(X) = 0.

Proof. To show that X is normal we must show (%, X) = 0. First we note

d . .
2 (1 X) =1, V5X)
And taking a further derivative
2
@ <’75 V’YX> = <77 V’YV’YX>

= — (%, R(X,7)7)

= _R(;Yv;anv 7) =0
So (¥, X) = at+b for a,b € R and by using the conditions on the endpoints we can show that (3, X) = 0,
so X is normal. Thus, the equation for I(~) reduces to:

1
I(X) = / V5 X[ ROX. 4, X.4) dt

1
_ / (V5 X, V5 X) + (X, V4 V5 X) dt
0

'd
= — (X, V. X) dt
/O dt (X, V5.X)
= (X, V5X)|p =0
as the conditions on the endpoints are the same. ]

Now we have all of the tools necessary to prove Theorem 4.1 which states that if v is a minimizing
geodesic then none of its interior points are conjugate points.

Proof. We will prove the theorem by contradiction, assuming there exists a conjugate point at v(tg) and
showing that v cannot be length minimizing. To this end we will show there exists a normal Jacobi field
Y along v, which by Proposition 4.2 is the variational field of some variation v,(t), such that the second
variation of Y, I(Y) < 0 which would imply ~ is locally length maximizing.

First we show the existence of a normal Jacobi field such that X(0) = 0 and X(tp) = 0, where
~(to) is the conjugate point to 4(0). Since (to) is conjugate, there exists A(e) € T,M such that
A'(0) € ker <dea:pp|t0A), and defining X (t) = dexpy|, 4 (tA'(t)) gives the desired Jacobi field. And by
Proposition 4.3 it is normal on [0, tg] and has I(X) = 0 on that interval.

Around every point in a Riemannian manifold the exponential map is a diffeomorphism from a small ball
in the tangent space to a small normal neighborhood in the manifold. Thus there exists § > 0 such that



the exponential map is a diffeomorphism on B(0,6) C T, M. Thus exp. ) cannot have any critical
points in the interval, so none of the points on 7|[t075,t0+5] are conjugate to y(tg — J). Now we seek to
prove the existence of a Jacobi field Z(t) on [to — 0, t, + 9] such that Z(tg — ) = X (t¢d) and Z(to+9) = 0.

We first note that since the Jacobi equation is an system of n second-order ordinary differential equations,
its solution set is 2n-dimensional. Next, we consider the linear map o : X — (X (tg — 9), X (to + 9)) from
the 2n-dimensional space of Jacobi fields to the 2n-dimensional space T ;,—5)M @& Ty1o45)M. It is
injective as it is a homomorphism of vector spaces and the only Jacobi field which has both endpoints
0 is the unique solution X (¢) = 0 of the Jacobi equation with those initial conditions. But since the
dimension of the domain and codomain are both 2n it is surjective as well. Thus there exists a Jacobi
field Z with the perscribed endpoints. By Proposition 4.3 Z is normal.

Before we define our final Jacobi field which will satisfy I(Y) < 0, we will first show that the Jacobi field
Z defined above is minimal in the sense that I(Z) < I(W) where W is any other piecewise smooth field
along ~y. Since Z is normal, it can be written as an R-linear combination of of {W1,...,W,,_1}, a basis
for the subspace of normal Jacobi fields. A computation shows that for a smooth field W = f*W;, where
now f* are smooth functions, I can be written.

I(W):/Ol

And since Z is normal, the f’s are constant, and the formula reduces to.

Fwil dt P Q) (VW W)L

I(Z) = fr)F ) (VWi Wil iy, 45

Thus for any smooth field W which agrees with Z on ty — § and ty + § we have

to+9 B 2
I(W) - 1(2) :/t Fwy| dt >0

0—0

And so Z is strictly minimal amongst smooth fields with the same endpoints.
Now define the Jacobi field Y on all of vy by

And we compute

L(Y) =1 (Y) = I~ (X) + I %3(2)
= 1p"(X) — I;p_5(X) + ;35 (2)
= 1Ly25(2) — I

And Z is minimal by the argument above, so for a field defined

W(t) . X(t) t e [to — (5, t()]
1o t € [to, to + 9]

W and Z have the same endpoints, so I(Z) < I(W), and since Ittgi&to (X) = Ifgfg(W), it follows that
IL(Y) < 0, contradicting the fact that v was length minimizing.
O



Geometric Analysis Homework 1

The first four exercises are taken from Geometry VI: Riemannian Geometry by M.M. Postnikov.

Ezxercise 11.83 Prove that parallel translation with respect to a Riemannian connection is an isometric
mapping of tangent spaces.

Proof. Let X (t) and Y (¢) be parallel vector fields along v so that Vs X (t) = Vi)Y (t) = 0. To prove
parallel translation is an isometry we must show (X (¢),Y(¢)) is constant.

d

SAX (0, Y (1) = (V3 X(0), Y (1) + (X (), V3V (B) = 0

Thus parallel translation is an isometry. O

Ezxercise 11.4 Prove that the matrix for the Lagrangian L on T'M with local coordinates (ql, RN L L cj”)

given by
0%L
0¢ 0¢?

does not depend on the choice of local coordinates.

Proof. Let ¢ be a change of coordinates such that ¢(¢) = p. This induces a change of coordinates on

the tangent space by p = (d¢)~'¢ and more specifically p; = (d¢~');i¢;. Thus g’q.";i = (d¢p~1);; and

% = 0. Under the change of coordinates L changes as

L(g,4) = L(¢™ ' (p). de(p)) = G(p, p)
And the partial derivatives of L change as

L 0G op
0q¢;  Opy, Og;
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_ 0°G Op Opy,
"~ Op0p; 94 O
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OprOp; \ Op; Op; dq; 9q;
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 Opkop
_ 0%L
~ Op;0p;
So [%} does not depend on the choice of local coordinates. O

Ezxercise 12.2 Prove that a geodesic remains a geodesic under a reparameterization iff this reparameter-
ization is linear (has the form ¢ — at + b, where a # 0).

Proof. Consider a reparameterization s = g(t) for the geodesic y(s). Now put the reparameterized curve
~v(g(t)) into the geodesic equation.

2
%Vi(g(t)) + @(7(9(1&)))%7 (t)%,yk(t)
+ 1

5 (g(1))(g'(1)* + 4 (9(t)g" () + T (v (g(£)3 (9(t)¥* (9(£)) (¢’ (1))?
9" () + [5°(s) + Thy (v(s)37 ()7*(9)] 9" (1)
g"(t)

=4"(g(
=4(s)
=9'(s)g"(t

— ~i(s

Where the last equality is because 7(s) is a geodesic. Since 4¢(s) # 0, v(g(t)) is a geodesic iff " (t) = 0
iff g(t) = at + b for a,b € R and a # 0. O

Ezercise 27.1 Show that for any piecewise smooth field X on the geodesic «, the inequality
Ii(X+) < Ig(X)

holds, where X is the normal component of the field X (i.e., X (t) — X*(t) is collinear to the vector
4(t) for every t).

Proof. Assuming v : [a,b] — M is a unit speedgeodesic, let {¥(a) = Ay, Az,..., A,} be an orthonormal
basis for T',(q) M. Parallel transporting each of these vectors along v based on the unique solution to the
differential equation V) X;(t) = 0, X;(0) = A; yields an orthonormal frame along v with X () = (t).

n
Thus, any smooth vector field X along v can be written as X = Z fiX; for f* smooth functions. Then
i=1

X+ = Z f'X; as X+ has no component parallel to X; = 4. On smooth vector fields I(x) is given by
i—2

/b [(vﬂX, Vi X) — R(X,4, X,4) — (VsX, ;Y>2} i

Examining the first term in the integral we see



(V5X,V5X) = (V4 f'Xi, V5 [ X;)
_ <f'iXi + VX X+ fjvﬁXj>

~S|4f

And comparing X to X we see
2
fl‘ dt

b b b
/ (V4 X,V5X) dt —/ (ViX+ viXt) dt :/
Examining the second term in the integral, since R(X,Y,Z,Z) = 0 by the symmetries of the curva-

ture tensor, it follows that R(f'X;,%, f1X1,%) = R(f'X:, %, f1X1,X1) = 0. Thus R(X,%, X,%) =
R(X LA X %) and their difference contributes nothing to the integral.

Examining the third term in the integral we see

<V’YX7 7>2 = <fiXi7X1>2
=1

And comparing X to X we see

b b 9 9
_/ (V5 X,5)? dt — (—/ (Vi X14) dt) =—|fY

So together

b
I(X) - I(X") :/ = | de=o0
O

Ezercise 5 Prove that the Jacobi field Z from the proof of Theorem 4.1 from the notes on Lectures 1-4
is normal.

Proof. The Jacobi field Z(t), which is defined on [ty — d,t¢9 + 0] has the property that Z(tp — ) =
X (tg — 9) where X is a normal Jacobi field on [0, %], and Z(tg + 6) = 0. Thus (Z(to — 9),%(to — 9)) =
(X (to—0),¥(to —0)) = 0 as X was already shown to be normal. Likewise (Z(to+ 9),7(to +9)) =
(0,5(to +6)) = 0.

By Proposition 4.3 Z must be minimal. O

Ezercise 6 Prove that the normal Jacobi field Z from the proof of Theorem 4.1 from the note on Lectures
1-4 is minimal.

Before beginning the proof of the minimality of Z I will state and prove a lemma.

Lemma 0.1. For any smooth normal vector field W = fiW; written in terms of an orthonormal basis
{Wh,...,Wy_1} for the space of normal Jacobi fields with a prescribed final value. If W (1) = 0 we can

write I(W) as
IowW) = /0

Fwil e — £i0) £ 0) (95w W)

=0



Proof. The formula for I of a normal vector field is as shown in the notes
1
I0V) = [ UV W.930) = ROV.4. W) di

Computing the first term

(V4 W, VW) = <fiwi + VLW fIW 4 fﬂ'vﬁwj>

F Wl +2f f7 (Wi, Va W) + f f7 (Vi Wy, Vs, W)

Computing the second term

R(W, 4, W) = f' I (R(Wi, %)%, Wj)
= —f (V4 VWi, W))

Where the last equality is because of the Jacobi equation applied to W;. Noting

d
7 (Vs Wi, Wy) = (V5 V3 Wi, Wj) + (Vi Wy, V3 ;)

We see that
2 L oo d
+2f 7 (Wi, Vs Wy) +fo3£ (Vs Wi, Wj)

(V4W, V5 W) — R(W, 4, W, %) = | f'W;

Also we have

d . , o 4
= INVAW PIW) = PV Wa, W) + 21 (VW Wi + 27— (V5 W, W)

So we see that,

Now to show that the middle term of the right hand side is zero

d

o (VaWi, Wy) = (Vs Vs Wi, W) + (Vs Wi, Vs W)
And likewise

d . .

pn (Wi, Vs Wi) = (Vs Wy, Vs W) — R(W;, 4, Wi, )

And examining the middle term of the previous expansion

d
= [Wi, Vs W) = (V5 Wi, W) = 0



So it is equal to a constant, but since W;(1) = W;(1) = 0 the whole term is equal to 0. And we can
simplify
fw;

) ) 2d, ,
(Vs W, Vs W) — R(W, 4, W) = + o (' 5W5, fTW;)

And integrating from 0 to 1 gives the desired result

Now we return to the proof of the minimality of Z.

Proof. Z is in particular a smooth normal field, so it can be written in terms of an orthonormal basis
{Wy,...,W,_1} for the space of normal Jacobi fields with perscribed initial value Z(tg — §) = X (o — 9).
Let Z(t) = f'W;. Since Z is a Jacobi field, it is a solution of the Jacobi equation. Evaluating the Jacobi
equation for f‘W; and using the fact that each W; satisfies the Jacobi equation gives

0=V V4 (f'W;) + R(5, f W)y =V, (lez + fiv"sz) + fIR(3, W;)5
= fW; + 2f'V5 Wi + V4V Wi + fIR(5, Wi)
= f' Wi+ 2f'V W,

This implies that f’ =0 Vi. If not, then V;W; would be some multiple of W; which would contradict
the fact that Z(to + &) = 0. Thus f* is a constant for each i.

By the lemma, I(WW) can be written

mm:Al

And for Z = f'W; where the coefficients are constant the formula reduces to

Fwil e — £ £ 0) (Vs W,

I(Z) = —f'(to = 8)f (to — 8) (Vs Wi, W),y s
And for any smooth field W = ¢*W; which agrees with Z on ty — 6 and g + J we have

to+9d

mm—um=AE6WmFﬁzo

0—

So Z is strictly minimal amongst smooth fields with the same endpoints. O



