
We discuss the following equations:∑
|α|,|β|≤mD

β(aαβD
αu) =

∑
|β|≤mD

βfβ (1)

Here fβ ∈ L2(Ω), Ω ∈ Rn bounded.
The weak formulation of the equation is as follows:

∫
Ω

∑
|α|,|β|≤m

(−1)|β|aαβD
αuDβζ =

∫
Ω

∑
|β|≤m

(−1)βfβD
βζ,∀ζ ∈ C∞0 (Ω) (2)

And the uniformly ellipticity holds. That is:

∑
|α|,|β|=m

aαβ(x)λαλβ ≥ µ
∑

|α|,|β|=m

λ2
α,∀x ∈ Ω,∀{λα}nα=1 ⊆ R (3)

Lemma 1. If u ∈Wm,2 is the weak solution of the equation (1), (3) is satisfied
by the equation (1), |Dlaαβ | ≤ Cl, l ≤ k and fβ ∈ W k,2, then the following
inequality holds:

||u||Wm+k,2(BθR(x0)) ≤ C(||u||Wm−1,2(BR(x)) +
∑
|β|≤m

||fβ ||Wk,2(BR(x0)))

Corollary 1. If fβ , aαβ ∈ C∞, then u ∈ C∞.

Now we begin to talk about the interior Schauder theory.
The simplest example is the following:

∆u = f

It is easy to verify that if f ∈ C0,α, then u ∈ C2,α.
The proof of the Schauder estimate can be divided into two steps: the first

step is to prove the estimate for constant coefficient diferential operators; the
second step is prove the estimate of free coefficient differential operators based
on the observation that these operators are just perturbations of the constant
coefficient ones.

Define the norm as follows:

Definition 1.

[u]µ,Ω = sup
x,y∈Ω,x 6=y

|u(x)− u(y)|
|x− y|µ

|u|k,µ =

k∑
j=0

|Dju|0 + [Dku]µ
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|Dku|C0,µ = [Dku]µ =
∑
|β|=k

[Dβu]µ,Rn

(Worth noticing that the symbols of norms and seminorm might vary in this
lecture notes.)

We have the following lemma:

Lemma 2. If u is a weak solution of the following equation ON Rn:

∑
|α|=|β|=m

aαβD
α+βu =

∑
|β|=2m−k

Dβfβ

Here |aαβ | ≤ Λ is a constant. Assume also that [Dku]µ,Rn < ∞. Then we
will have the following estimate:

|Dku|C0,µ(Rn) ≤ C
∑

|β|=2m−k

|fβ |C0,β(Rn)

with C = C(Λ, λk, k, n, µ).

Proof. Suppose the inequality doesn’t hold, ∃a(j)
αβ , f

(j)
β , uj such that:

|f (j)
β |C0,µ(Rn) <

1

j
|Dnuj |C0,µ(Rn) (4)

And there exists xj , yj ∈ Rn such that:

|Dkuj(yj)−Dkuj(xj)|
|xj − yj |p

≥ C|Dkuj |C0,µ(Rn)

Let’s define |Dkuj |C0,µ(Rn) := λk, σj := |yj − xj | respectively. Now let

ũj(x) = σ−µ−kuj(xj + σjx), let xj → 0, yj → ∂B(0, 1).

By our definition, |Dkũj |C0,µ = 1, and f̃j , ũj satisfy (1) w.r.t f̃
(j)
β and ã

(j)
αβ .

By (4), we have that |f̃ (j)
β |C0,µ ≤ 1

j .

And the following inequality will hold for the sequence ηj := σ−1
j (yj − xj)

(Notice that |ηj | = 1):

|Dkũj(ηj)−Dkũj(0)| ≥ C (5)

Now we can rewrite the ũj as ũj = Pj(x)+Rj . Pj here is the degree k Taylor
expansion at the point x = 0. The Pj term here will not matter because you
will quotient out by |xj − yj |α here. So |Dα(ũj − Pj)|C0,µ = |Dαũj |C0,µ = 1.

Now we can define a new variable vj := ũj − Pj . And it is easy to see that

Dkvj(0) = 0, |Dkvj(ηj)| ≥ C, C is a constant (by (5)). We have
|Dkvj(0)−Dkvj(ηj)|

|0−ηj |µ ≥
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C. We know that |Dkvj |C0,µ(Rn) = 1, and we have the following inequality (Ex-
ercise 1):

|Dlvj |C0(BR(0)) ≤ CRk−l+µ

Proof. The repeated application of the fundamental theorem of calculus tell us
the following:

sup
BR(0)

|vj | ≤ Rk sup
x∈BR(0)

|Dkũj(x)−Dkũj(0)|

Now the definition of the |Dkũj |C0,µ = [Dkũj ]µ norm tell us that the right
hand side is smaller than Rµ|Dkũj |C0,µ . Combining these observations, we have
the following

sup
BR(0)

|vj | ≤ Rk+µ

Now simply apply the above bound to the function Dlvj , we can easily get
the estimate needed.

So ||vj ||Cl(BR(0)) is bounded. By Arzela-Ascoli Thworem, we can find the

converging subsequence in Ck,δ(BR(0)),∀δ < µ to a v ∈ Ck,µ(BR(0)), v 6≡ 0.
(*)

|Dk(v(η))| 6= 0

|Dk(v(0))| = 0

|Dkv|C0,µ = [Dkv]0,µ ≤ 1

Here η = lim ηj′ . The last equality holds because |Dkvj |C0,µ = [Dkvj ]0,µ = 1
and the fact that the norm here is lower semicontinuous. Furthermore, we will
have that v satisfy the following equation weakly (Exercise 2):

∑
|α|=|β|=m

a0
αβD

α+βv = 0

Here a0
αβ = limj′→∞a

j′

αβ .

Proof. Because of the construction, |f̃ (j)
µ |C0,µ ≤ 1

j . So the limit [fβ ]C0,µ = 0, it
tells us that fβ is a constant.

Now all the ṽj satisfy the following integration equation (weak form):

∑
|α|=|β|=m

(−1)β
∫
ãαβD

αṽjD
βwdx =

∑
|β|=2m−k

(−1)β
∫
f̃

(j)
β Dβwdx,w ∈ Hm
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By Lebesgue Dominated convergence theorem, the right hand side goes to zero,
and the left hand side become

∑
|α|=|β|=m(−1)β

∫
a0
αβD

αvDβwdx
So we have that:∑
|α|=|β|=m

(−1)β
∫
a0
αβD

αvDβwdx = 0,∀w ∈ Hm

That is the weak form we are looking for.

By Exercise 1, supBR |v|BR ≤ CRk+µ. By the L2 estimate (Theorem 2
below), we have that for any q:

sup
BR/2

|Dqv| ≤ C

Rq
sup
BR

|v| ≤ CRk+µ−q

Here the constant C doesn’t depend on anything. Take q = k+1 let R→∞,
we will have that Dk+1v = 0 on Rn. So Dkv is a constant. But correspond to
(*) above, we have that |Dkv(η)| 6= 0 and Dkv(0) = 0, which is a contradiction.
This completes the proof.

Theorem 1. u ∈ Cm,µ(BR(x0)) is the solution to the equation. Then

|u|m,µ,BθR(x0) ≤ C(|u|0,BR(x0) +
∑
|β|≤m |fβ |0,µ,BR(x0)),

C = C(R,n,m, θ, γ, µ,Λ)

Proof. Let R = 1, x0 = 0, Bδ(y) ⊆ B1(0). x ∈ Bσ(y), so we will have zn =
x−y
σ ∈ B1(0). Now let’s define the ũ(z) := u(y + σz) on B1(0), and f̃β(z) =
fβ(y+σz), ãαβ(z) = aαβ(y+σz) And we have the following pull back equation:

∑
|α|,|β|≤m

Dβ(ãαβD
αũ) =

∑
|β|≤m

Dβ f̃β

on B1(0).
Here we will have:

|ãαβ |C0(B1) ≤ Λ

|ãαβ |C0,µ(B1) ≤ Λσµ

Now with ãαβ(0) = aαβ(y), we have the following:∑
|α|,|β|≤m

Dβ(ãαβ(0)Dαũ) =
∑

Dβ((ãαβ(0)− ãαβ)Dαũ) +
∑
|β|≤m

Dβ f̃β

Now extend ũ to Rn. ϕ ∈ C∞0 (Rn), supp(ϕ) ⊆ B1(0), ϕ = 1 on B1/2(0).
ũ→ ϕũ, fn on Rn
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(*) ∑
Dβ(ãαβ(0)Dα(ϕũ))

=
∑

|β,|γ|,|δ|≤m

Dγ(cβγδD
δϕf̃β) +

∑
|α|,|β|,|γ|,|δ|≤m

Dγ(dαβγδD
δϕ(ãαβ(0)− ãαβ)Dαũ)

+
∑

|α|<m,|β|,|δ|≤m

(bαβγD
γϕDαũ)

The following statment is useful at this stage (which follows easily from
D2(ϕf) = ϕD2f +D(2Dϕf)− (D2ϕ)f and mathematical induction):

ϕDβ f̃β =
∑

|γ|,|δ|≤m

Dγ(cβγδD
δϕf̃β) (6)

cβγδ is a constant.
With the same satement, we have the following:

ϕDβ((ãαβ(0)− ãαβ(x))Dαũ) =
∑

|γ|,|δ|≤m

Dγ(dαβγδD
δϕ(ãαβ(0)− ãαβ(x)Dαũ))

For suitable constants dαβγδ with |dαβγδ| ≤ C,C = C(n,m). With these,
the equation above (*) can be rewritten:

(**) ∑
|α|=|β|=m

Dβ(ãαβ(0)Dαv)

=
∑

|β|,|γ|,|δ|≤m

Dγ(cβγδD
δϕf̃β) +

∑
|α|,|β|,|γ|,|δ|≤m

Dγ(dαβγδD
δϕ(ãαβ(0)− ãαβ(x))Dαũ)

+
∑

|α|≤m,|β|,|γ|≤m

Dβ(bαβγD
γϕDαũ)

Here the constants bαβγ , cβγδ, dαβγδ are constants with |cβγδ|, |dαβγδ| ≤ C
and |bαβγ | ≤ CΛ, C = C(m,n).

Because v now has compact support, we can extend the function v to all
of Rn by simply setting it to be zero elsewhere. And if |β| < m, we can

rewrite Dβg = Dβ̃ g̃ for suitable β̃ with |β| = m and for suitable g̃ such that
[g̃]µ ≤ C(|g|0+[g]µ) (This is just a simple exercise in FTC, one has to be carefull
of the seminorm of the function they get.). Now we can apply the Lemma 1 to
(**), getting the following function:
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[Dmv]µ ≤C(
∑

|α|,|β|≤m

|(ãαβ(0)− ãαβ(x))Dαũ|0

+ [(ãαβ(0)− ãαβ(x))Dαũ]µ +
∑
|α|<m

(|Dαũ|0 + [Dαũ]µ)

+
∑
|β|≤m

(|f̃β |0 + [f̃β ]µ))

Here all the norms and seminorms are over B1(0). In order to get rid of the
ϕ factor, we have applied the simple relations of the seminorms, i.e., [f + g]µ ≤
[f ]µ + [g]µ, [fg]µ ≤ |f |0[g]µ + [f ]µ|g|0 to estimate the Holder norm of the terms
bβγδD

γϕDδu. The same technique can be apply to the first two terms on the
right (the terms involving (ãαβ(0)− ãαβ(x))), we will have:

(***)

[Dmũ]µ ≤C(
∑

|α|,|β|≤m

|ãαβ(0)− ãαβ(y)|0[Dαũ]µ +
∑

|α|,|β|≤m

[ãαβ ]µ|Dαũ|0

+
∑
|α|<m

(|Dαũ|0 + [Dαũ]µ) +
∑
|β|≤m

(|f̃β |0 + [f̃β ]µ))

Here all the norms and semi-norms are over B1(0) and C depends only on
θ,Λ, γ, µ, m and n.

Now by assumption on ãαβ , max|α|=|β|=m |ãαβ − ãαβ(0)|0,B1(0) ≤ Λσµ and
by easy calculus argument we have:

|Dkũ(x)−Dkũ(y)| ≤ |Dk+1ũ|0|x− y|, k ≥ 0

In other words,

[Dkũ]µ ≤ 2|Dk+1ũ|0,m− 1 ≥ k ≥ 0

Then using the above and the interpolation inequality (Lemma 3 below), we
have the following:

[Dαũ]µ ≤ |Dα+1ũ|0 ≤ ε[Dmu]µ + C|u|0

Here the radius of the ball is one, so we don’t have the extra Rl factor. Do the
same thing to all the terms in (***), we will have that:

[Dmũ]µ,B1/2(0) ≤ C(ε+ σµ[Dmũ]µ + |ũ|0 +
∑
|β|≤m

(|f̃β |0 + [f̃β ]µ), (7)
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Where C here depends only on µ, θ, n,m,Λ, γ, and where all norms and semi-
norms are still over B1(0). The σµ term comes from the ãαβ .

Now by scaling and translation to get back to the original function u on the
original ball Bσ(y) ⊆ B1(0), we have proved:

σm+µ[Dmu]µ,Bσ/2(y) ≤ C((ε+σµ)σm+µ[Dmu]µ,Bσ(y)+|ũ|0,Bσ(y)+
∑
|β|≤m

|fβ |0,Bσ(y)+σ
µ[fβ ]µ,Bσ(y))

(8)

which implies,

σm+µ[Dmu]µ,Bσ/2(y) ≤ C(ε+ σµ)σm+µ[Dmu]µBσ(y) + γ

for every Bσ(y) ⊂ B1(0), γ := C(|u|0,B1(0) +
∑
|β|≤m |fβ |0,µ,B1(0)). Notice that

here we expand the norm of u and fβ to the whole ball B1(0) in order to make
γ a fixed number.

The proof is now completed by setting σ = ε, with ε small enough, and
applying the Absorption Lemma 4with l = m + µ, ε0 = εµ + ε, and with
S(A) = [Dmu]µ,A:

[Dmu]µ,Bθ(0) ≤ Cγ = C(|u|0,B1(0) +
∑
|β|≤m

|fβ |0,µ,B1(0))

and hence, by the interpolation inequality, |u|m,µ,Bθ(0) ≤ Cγ as required.
The proof is now complete.

In the above proof, we have applied the following two Lemma:

Lemma 3. (Interpolation Lemma) For any u ∈ Ck,µ(B̄R(x0)), we have the
following interpolation inequatlity:

Rl|Dlu|0 ≤ εRk+µ[Dku]µ + C|u|0

for eache ε > 0 and 1 ≤ l ≤ k, where C = C(ε, µ, k, n).

Proof. It is easy to observe that:

|Dju(y)−Dju(x)| ≤ |y − x|β [Dju]β,BR(x0)

So we can easily derive the following

|Dju(y)| ≤ |Dju(x)|+ |y − x|β [Dju]β,BR(x0)

Because Dju is continuous, we can choose σ and y such that xmax ∈ Bσ(y),
xmax is the point in BR(x0) where the Dju reaches its maximum value. Now it
is obvious that |xmax − z|β ≤ σβ for ∀z ∈ Bσ(y). So we have the following:

7



|Dju|0,BR(x0) = |Dju(xmax)| ≤ inf
Bσ(y)

|Dju|+ (2σ)β [Dju]β,BR(x0)

For the infBσ(y) |Dju|, we have the following inequality based on elementary
calculus:

|u(x)− u(y)| ≥ ( inf
Bσ(y)

|Dju|)|y − x|

Here without loss of generality, you infBσ(y) |Dju| can simply choose |y−x| =
2σ, and the j-th coordinate of y and x to be the same. And by the triangular
inequality, we will have:

2|u|0,Bσ(y) ≥ ( inf
Bσ(y)

|Dju|)2σ

σ−1|u|0,Bσ(y) ≥ inf
Bσ(y)

|Dju|

Now we are ready to sum up through j and come to the following result:

|Du|0,BR(x0) ≤ nσ−1|u|0,BRx0
+ 2σβ [Du]β,BR(x0) (9)

Now we are ready to prove the general interpolation theorem. Based on the
above estimate, we have the following (choose β to be 1):

|Du|0,BR(x0) ≤ nσ−1|u|0,BR(x0) + 2σ[Du]1,BR

Notice that [Du]1,BR is bounded by |D2u|0,BR , we have the following:

|Du|0,BR(x0) ≤ nσ−1|u|0,BR(x0) + 2σ|D2u|0,BR

Now we can also replace the u in the above inequality by the function Dju,
so we end up with the following estimate:

|D(Dju)|0,BR(x0) ≤ nε−1|Dju|0,BR(x0) + 2ε|D3u|0,BR

Combine the above two, and sum up all the j th components we will have:

|D2u|0,BR(x0) ≤ n3ε−1σ−1|u|0,BR(x0) + 2n2ε−1σ|D2u|0,BR + 2nε|D3u|0,BR

Now we can choose σ = ε
4n2 :
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(1− 1

2
)|D2u)|0,BR(x0) ≤

n

4
ε−2|u|0,BR(x0) + 2n2ε|D3u|0,BR

Doing the same thing to other higher order derivatives and choose the cor-
responding σ carefully, we will end up with the following estimate (through
induction):

|Dku|0 ≤ C(σk|u|0 + σm−k|Dmu|0)

Then use the inequality (6) with Dmu in place of u and with β = µ give us
the final estimate shown in the lemma.

The second lemma is the following:

Theorem 2. If The differential operator Lu =
∑
|α|≤m aαD

αu satisfy the fol-
lowing two conditions:

|aα| ≤M, |α| ≤ 2m (10)∑
|α|=2m

aαξ
α ≥ µ|ξ|2m, ξ ∈ Rn (11)

and u ∈ L2
loc(BR(x0)) is a weak solution of the equation Lu =

∑
|β|≤2m−kD

βfβ

on BR(x0), where ||fβ ||l,BR(x0) <∞. Then u ∈ Hk
loc(BR(x0)), and in fact:

||u||k+l,BθR(x0) ≤ C(||u||0,BR(x0) +
∑

|β|≤2m−k

||fβ ||l,BR(x0)) (12)

for each θ ∈ (0, 1), where C depends only on n,M, µ, θ,R. (In particular, if
u ∈ C∞(BR(x0)) if all the fβ ∈ C∞(BR(x0)))

Proof. After mollification, the mollified function uσ satisfies the classical equa-
tion:

Luσ =
∑

|β|≤2m−k

Dβ(fβ)σ (13)

on BR−σ(x0)
So assume θ ∈ (0, 1), σ < (1−θ)R/2, and let ψ be an arbitrary C∞c (BR(x0))

function. Notice that by repeatedly using the Leibniz formula, we can rewrite
the equation 13 in the form:
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∑
|α|=2mD

α(aαψuσ) =
∑
|γ|+|δ|≤2m,|δ|≤2m−1D

δ(bγδ(D
γψ)uσ)

+
∑
|δ|+|γ|≤2m−k,|δ|≤2m−k−1D

δ(dβγδ(D
γψ)(fβ)σ) +

∑
|β|=2m−kD

β(ψfβ)

for some constant bγδ, dβγδ with |bγδ| ≤ CM, |dβγδ| ≤ C. Now we take the
Fourier transform of the above equation, then we will have:

∑
|α|=2m aα(−iξ)αψ̂uσ =

∑
|γ|+|δ|≤2m,|δ|≤2m−1(i)|δ|ξδbγδ ̂(Dγψ)uσ

+
∑
|δ|+|γ|≤2m−k,|δ|≤2m−k−1(i)|δ|dβγδ ̂(Dγψ)(fβ)σ) +

∑
|β|=2m−k(i)2m−kξβψ̂fβ

Now we can apply the ellipticity condition 11 to the left hand side and
get µ|ξ|2m. Also we want to get something equivalent to the H l norm on the
left hand side, so we add extra lower order term such that the l.h.s become

(1 + |ξ|)2m|ψ̂uσ|, now our euqation turn into the inequality:

(1 + |ξ|)2m|ψ̂uσ| ≤ C(1 + |ξ|)2m−1
∑
|γ|≤2m | ̂(Dγψ)uσ|

C(1 + |ξ|)2m−k−1
∑
|γ|≤2m−k | ̂(Dγψ)(fβ)σ|+ C(1 + |ψ|)2m−k|ψ̂fβ |

We like the term (1 + |ξ|)2m|ψ̂uσ| because we have the following relation:

||
∑
|α|≤2m

|ξ|αû||L2 ' ||u||H2m

∑
|α|≤2m

(|ξ|α) ' (1 + |ξ|)2m

The first is based on the observation that ∂̂jf = (−iξj)f̂ . So we have that

||(1 + |ξ|)2m|ψ̂uσ|||L2 ' ||u||H2m .
Now we can multiply both side by (1 + |ξ|)k+l−2m, where k + l ≥ 1. So we

will have (applying the Plancheral theorem)

||ψuσ||k+l,BR(x0) ≤
∑
|γ|≤2m ||(Dγψ)uσ||k+l−1,BR(x0) +∑

|γ|≤2m−k ||(Dγψ)(fβ)σ||(l−1)+,BR(x0) + C||ψ(fγ)σ||l+,BR(x0)

where j+ means max(j, 0). Keeping in mind that ψ was an arbitrary C∞c (BR(x0))
function (so that if k + l ≥ 2 the argument can be repeated with Dγψ in place
of ψ), we conclude by induction on l that

||ψuσ||k+l,BR(x0)) ≤
∑

|γ|≤2(k+l)m

||(Dγψ)uσ||0,BR(x0)+
∑

|γ|≤2(k+l)m

||(Dγψ)(fβ)σ||l,BR(x0)
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Now we select the function ψ such that ψ = 1 in BθR(x0), ψ = 0 outside
B(1+θ)R/2(x0) and

|Dαψ| ≤ C(1− θ)−|α|R−|α|

for each multi-index α, with C = C(n, α). Then the above inequality gives
the required inequality.

The last lemma we need is the following:

Lemma 4. Let S be a real valued monotone sub-additive function on the class of
all convex subsets of BR(x0) (i.e. S(A) ≤

∑N
j=1 S(Aj) when ever A,A1, A2...AN

are convex sets with A ⊂ ∪Nj=1Aj ⊂ BR(x0)), and suppose that θ ∈ (0, 1), µ ∈
(0, 1], γ ≥ 0, and l ≥ 0 are given constants. There is ε0 = ε(l, θ, n) > 0 such
that if (*)

ρlS(Bθρ(y)) ≤ ε0ρlS(Bρ(y)) + γ

whenever Bρ(y) ⊂ BR(x0) and ρ ≤ µR, then

RlS(BθR(x0)) ≤ Cγ

where C = C(θ, µ, l, n).

Proof. Basically we want to consume the ε0ρ
lS(Bρ(y)) term and get a ”global”

estimate of the S(BθR). We can think of the S here as measures on the space
or the norms (the Hk norms, for example) of a fixed funtion over varying sets.

Let’s first define the following quantity:

Q = sup
Bρ(y)⊂BR(x0),ρ≤µR

ρlS(Bθρ(y)).

Then from (*) we can easily find that (replace ρ by θρ and take sup on the
right hand side):

(**)

(θρ)lS(Bθ2ρ(y)) ≤ ε0Q+ γ

for each ball Bρ(y) ⊂ BR(x0) with ρ ≤ µR. Take any ball Bρ(y) ⊂ BR(x0)
with ρ ≤ µR. Then we can sellect balls {B(1−θ)(yi)}j=1,2,3,...N with centers
yj ∈ Bθρ(y) s.t. Bθρ(y) ⊂ ∪Nj=1Bθ2(1−θ)ρ(yj) and with N ≤ C, where C is a
constant depending only on θ, n. (Be careful of the radius of the balls here. One
set of balls are of radius (1− θ)ρ, the other set of balls are of radius θ2(1− θ).
The balls with smaller raidus cover the ball Bθρ.) We introduce (1− θ) factor
in the radius here because we want the ball constructed to lie inside the ball
Bρ(y) Since each B(1−θ)ρ(yj) ⊂ BR(x0), we can apply (**) with B(1−θ)ρ
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(θ(1− θ)ρ)lS(Bθ2(1−θ)(y)) ≤ ε0Q+ γ

Now by the subadditibity of the function S, and the construction thatBθρ(y) ⊂
∪Nj=1Bθ2(1−θ)ρ(yj), we will have the following:

(θ(1− θ))lρlS(Bθρ(y))

≤(θ(1− θ))lρlS(∪Nj=1Bθ2(1−θ)ρ(yi))

≤(θ(1− θ))lρl
N∑
j=1

S(Bθ2(1−θ)ρ(yi))

≤C(ε0Q+ γ),

C = C(n, l)

We can devide the (1− θ)lθl on both side, and take sup to get the following:

Q ≤ Cε0Q+ Cγ,C = C(n, l, θ)

and hence if ε0 ≤ 1
2C
−1, we getting

Q ≤ 2Cγ

So that:

ρlS(Bθρ(y)) ≤ 2Cγ

for every ball Bρ(y) ⊂ BR(x0) with ρ ≤ µR. Since we can cover BθR(x0) by
at most C = C(θ, µ, n) balls BθµR(yj) with BµR(yj) ⊂ BRx0, we can again use
the given subadditivity of S to conclude the stated inequality.
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