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1 Maximal Principal

We consider the general form of elliptic operator of the form

Lu =

n∑
i,j=1

aijDiDj +
∑
j=1

bjDju+ cu, (1)

where ai,j , bj , c are bouded founctions on Ω(Ω is a bounded domain in Rn,
ai,j = aj,i, also we have strictly ellipticity assumption that there is a constant
µ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ µ|ξ|2 (2)

for allx ∈ Ω, ξ ∈ Rn.

Theorem 1 (Weak Maximum Principle). Under the assumption above and
let u ∈ C2(Ω) ∩ C0(Ω̄) satisfy Lu ≥ 0 in Ω. Assume also c(x) ≤ 0, then

max
Ω

u ≤ max
∂Ω

max{u, 0} (3)

If c ≡ 0, the inequality (3) holds with u in place of max{u, 0}.

Remark. 1. When Lu ≤ 0, we can apply the above theorem to −u, thus giving

min
Ω
u ≥ −max

∂Ω
max{−u, 0}. (4)

2. In the case Lu = 0, (In particular 4u = 0) we have

max
Ω
|u| = max

∂Ω
|u| (5)

Proof of the Weak Maximum Principle. Consider an auxiliary function v =
u+ εerx1 , where ε > 0, r > 0, so

Lv = Lu+ εerx1(a11r
2 + b1r + c) (6)

By the ellipticity condition (2)(implies a11 ≥ µ) and the boundedness condition
of coefficients b1 and c, let r be sufficiently large(independent of ε), we can get
Lv > 0. We claim v cannot attains maximum in Ω. If not, suppose that v attains
maximum at x0 ∈ Ω with v(x0) ≥ 0, then Div(x0) = 0 for i = 1, 2, . . . , n,
and D2v(x0) ≤ 0. So Lv(x0) =

∑
i,j aijDiDjv(x0) + c(x0)v(x0) ≤ 0, Which

contradicts the fact that Lv > 0 in Ω. Let ε goes to 0, we can get the required
result.

Theorem 2 (Weak Maximum Principle in Non-homogeneous Case).
Suppose Lu = f , where f ∈ L∞(Ω), any other condition are the same as Theo-
rem 1. Then

max
Ω
|u| ≤ max

∂Ω
|u|+ µ−1e2(1+β)d2 sup

Ω
|f |, (7)

where β is any upper bound for µ−1(d|b1| + d2|c|), d is any constant such that
Ω ⊂ {x = (x1, . . . , xn) : |x1| < d}. (We can take d = diam(Ω) since we can
translate so that 0 ∈ Ω.)
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Proof of Theorem 2. Define the auxiliary function v = u+µ−1d2 er(1+ x1

d )supΩ|f |,
where r ≥ 1 is constant to be chosen. By direct computation, we get

Lv = Lu+ sup
Ω
|f |µ−1(a11r

2 + b1dr + cd2)er(1+ x1

d )

≥ f + sup
Ω
|f |µ−1(µr2 − |b1|dr − |c|d2)er(1+ x1

d )

≥ f + sup
Ω
|f |r(r − β)er(1+ x1

d ).

(8)

So that if we choose that r = 1 + β, then we have Lv ≥ 0and thus we can
apply the weak maximum principle to v. Thus

max
Ω

u ≤ max
Ω

v ≤ max
∂Ω

max{v, 0} ≤ max
∂Ω
|u|+ µ−1e2(1+β)d2 sup

Ω
|f |. (9)

This completes the proof.

Corollary (Exercise). If ε ∈ (0, 1) and the hypotheses are as in Theorem 2, ex-
cept that the hypothesis c ≤ 0 is replaced by the condition µ−1e2(1+β)d2 supΩ c+ ≤
ε, then

max
Ω
|u| ≤ (1− ε)−1 max

∂Ω
|u|+ µ−1(1− ε)−1e2(1+β)d2 sup

Ω
|f |. (10)

Proof of Corollary. Note that c = c+−c−,so the equation Lu = f can be written
as L1u = f̃ , where f̃ = f − c+u, and where L1 is the same as L with −c−1 in
place of c. It is easy to get this result by applying Theorem 2 directly.

Our main goal is to prove the strong (or Hopf) maximum principle.Let us
first state it here.

Theorem 3 (Strong Maximum Principle). Suppose u ∈ C2(Ω), Lu ≥ 0,
c ≤ 0, (1),(2) above holds and Ω is connected and ∂Ω is smooth. Then if u
attains a non-negative maximum in Ω,then u is constant in Ω.

In the theorem 3, the assumption that c ≤ 0 is essential. It cannot be
dropped. For this we first need to establish the following Hopf boundary point
lemma.

Lemma 1(Hopf boundary point lemma). Assume B = B(y, ρ) is an open
ball in Rn, u ∈ C2(B), Lu ≥ 0 in B, x0 ∈ ∂B, u is continuous at x0, u(x0) ≥ 0,
and u(x) < u(x0) for each x ∈ B.Then, if Dη denotes directional derivative in
the direction of the inward pointing unit normal η of ∂B, we have

Dηu(x0) < 0, (11)

if this derivative exists and in any case

lim sup
h↓0

u(x0 + hη)− u(x0)

h
< 0. (12)
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Proof of Theorem 3 by using Lemma 1. Proof by contradiction. Assume that
us is non-constant and achieves its maximum M .Let S = x ∈ Ω : u(x) = M .
By continuity, S is relatively closed in Ω. It remains to show that B is open.
Take any point x0 ∈ S, x0 /∈ Int(S), there exists y ∈ Ω \ S with dist(y, S) <
dist(y, ∂Ω). Let x0 be the closest point of S to y and let ρ = |x0 − y|. By
Lemma 1 we can conclude that Du(x0) 6= 0, contradicting the fact that u has a
maximum at x0, i.e., Du(x0) should be 0.

Proof of Lemma. Without loss of generality, we can assume that u is continuous
on B̄, otherwise replace B with by a small ball B̃, with its closure contained
in B ∪ {x0} and x0 ∈ ∂B̃.Let r = |x − y|, and consider the auxiliary function

w = e−αr
2 − e−αρ

2

with α > 0 a constant to be chosen. Then by direct
computation

Lw = e−αr
2

(4α2
n∑

i,j=1

aij(x
i − xi)(xj − yj)− 2α(

n∑
i=1

aii +

n∑
i

bi(x
i − yi))) + cw

≥ e−αr
2

(4α2µr2 − 2α(

n∑
i=1

aii +

n∑
i

|bi|r) + c)

(13)

By condition (1)and (2)we get that for α large enough, we have

Lw > 0 in A,A = B(y, ρ) \B(y, ρ/2). (14)

Let v = u− u(x0) + εw, so Lv = Lu− cu(x0) + εLw > 0.Since w ≡ 0 on ∂B
and u < u(x0) on ∂B(y, ρ/2), we can choose ε small enough such than v ≤ 0 on
∂A. By the weak maximum principle, we have v ≤ 0 in A; i.e.

u(x)− u(x0) ≤ −εw(x), x ∈ A. (15)

Hence we have

lim sup
h↓0

u(x0 + hη)− u(x0)

h
≤ −εDηw(x0) < 0. (16)

This completes the proof.

Please refer to [1] for different version of maximal principle and some direct
applications.

2 Green’s function

Please refer to [2] for more background and more application. We can consider
Green’s function in more general setting. First we consider the simplest case,
i.e. Rn, then we proceed to find Green’s function on the domain in Rn, later
we can generalize to the manifold case (compact one, or non-compact one). For
the later two cases, please refer to the next lecture notes.
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Here we define the Laplace operator as ∆u =
∑n
i=1

∂2u
∂x2
i
. The Laplace equa-

tion is given by ∆u = 0, where n = 2, 3, . . . . We define the fundamental solution
of Laplace’s equation as follows:

Φ(x) =

{
− 1

2π log |x| if n = 2,
1

n(n−2)α(n)
1

|x|n−2 if n ≥ 3.
(17)

where α(n) denotes the volume of the unit ball in Rn. Let us state some basic
facts about Φ(x):

1. Φ(x) = Φ(|x|), i.e.it is radial;

2. |DkΦ(x)| ≤ Ck
|x|n−2+k , x 6= 0;

3. Φ is harmonic on Rn \ {0}. (Exercise)

Let’s prove the property 3 above. It is easy to compute that

DiΦ(x) =
−1

nα(n)
xi|x|−n (18)

and

DijΦ(x) =
−1

nα(n)

(
|x|2δij − nxixj

)
|x|−n−2 (19)

So

∆Φ(x) =

n∑
i=i

DiiΦ(x) =
−1

nα(n)

n∑
i=1

(
|x|2 − nx2

i

)
|x|−n−2 = 0

if x 6= 0.
Consequently, if y ∈ Rn, Φ(x− y) is also harmonic away from y. Generally the
linear combination of Φ(x − yi), where i = 1, 2, . . .K, is also harmonic away
from {y1, y2, . . . , yK}. That is to say, function

Φ̃(x) =

K∑
i=1

Φ(x− yi)f(yi) (20)

is always harmonic except for finite points.
But this is not true for the convolution∫

Rn
Φ(x− y)f(y)dy. (21)

Actually, we have the following conclusion:

Claim 1(Solving Poisson’s equation. For f ∈ C2
c (Rn),define u by (21),then

u ∈ C2(Rn) and ∆(−u) = (−∆)u = f in Rn.
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In [1], the fundamental solutions defined there have different signs with Φ.
In that case, i.e, all Φ is replaced by −Φ, then ∆u = f . That’s why I write
∆(−u) = f in the claim. In the chapter 4 of [1],we can see the it’s enough to
assume f is bounded and locally Hölder continuous.

Proof of Claim 1. First, note that

u(x) =

∫
Rn

Φ(x− y)f(y) dy =

∫
Rn

Φ(y)f(x− y) dy; (22)

Therefore

u(x+ hei)− u(x)

h
=

∫
Rn

Φ(y)

[
f(x+ hei − y)− f(x− y)

h

]
dy, (23)

where h 6= 0 and ei = (0, . . . , 1, . . . , 0),the 1 in the ith-slot. But

f(x+ hei − y)− f(x− y)

h
→ fxi(x− y) (24)

uniformly on Rn as h→ 0, and thus

Diu(x) = uxi(x) =

∫
Rn

Φ(y)fxi(x− y) dy (i = 1, . . . , n). (25)

Similarly,

Diju(x) =

∫
Rn

Φ(y)fxixj (x− y) dy (i, j = 1, . . . , n). (26)

Diju(x) is continuous, that means u ∈ C2(Rn).
Remark: If f is only assumed to be bounded and continuous, of course this

method doesn’t work. In that case ,we try to use the cutoff function to eliminate
the singularity of Φ, see [1] Chapter 4 for details.

Now, let’s prove the second part. The key point is to use Green’s formula to
break the whole space into two parts or more which are easily to compute and
use the property 2 of fundamental solution to get the desired estimates.

Since Φ blows up at 0, we need isolate this singularity inside a small ball.
So fix ε > 0. Then

∆u(x) =

∫
B(0,ε)

Φ(y)∆xf(x− y) dy +

∫
Rn\B(0,ε)

Φ(y)∆xf(x− y) dy

= Iε + Jε.

(27)

Now

|Iε| ≤ C‖D2f‖L∞(Rn)

∫
B(0,ε)

|Φ(y)|dy ≤

{
Cε2|log ε| (n = 2)

Cε2 (n ≥ 3).
(28)
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By integration by parts,

Jε =

∫
Rn\B(0,ε)

Φ(y)∆yf(x− y) dy

= −
∫
Rn\B(0,ε)

DΦ(y) ·Dyf(x− y) dy +

∫
∂B(0,ε)

Φ(y)
∂f

∂ν
(x− y) dS(y)

=: Kε + Lε,

(29)

where ν denotes the inward pointing unit normal along ∂B(0, ε). And

|Lε| ≤ ‖Df‖L∞(Rn)

∫
∂B(0,ε)

|Φ(y)|dS(y) ≤

{
Cε| log ε| (n = 2)

Cε (n ≥ 3).
(30)

For Kε, do integration by parts again, we get

Kε =

∫
Rn\B(0,ε)

∆Φ(y)f(x− y) dy −
∫
∂B(0,ε)

∂Φ

∂ν
(y)f(x− y) dS(y)

= −
∫
∂B(0,ε)

∂Φ

∂ν
(y)f(x− y) dS(y).

(31)

By formula (18), we have DΦ(y) = −1
nα(n)

y
|y|n (y 6= 0) and ν = −y

|y| = −yε on

∂B(0, ε). So
∂Φ

∂ν
(y) = ν ·DΦ(y) =

1

nα(n)εn−1

on ∂B(0, ε). Since nα(n)εn−1 is also the surface of the sphere ∂B(0, ε), we get

Kε = − 1

nα(n)εn−1

∫
∂B(0,ε)

f(x− y) dS(y)

= − 1

nα(n)εn−1

∫
∂B(x,ε)

f(y) dS(y)→ −f(x) as ε→ 0.

(32)

Let ε→ 0, we prove the claim.

Let U $ Rn be a domain, and ∂U is smooth. And assume that u ∈ C2(Ū),
then we have the general Green’s representation formula

u(x) =

∫
∂U

Φ(y−x)
∂u

∂ν
(y)−u(y)

∂Φ

∂ν
(y−x) dS(y)−

∫
U

Φ(y−x)∆u(y) dy, (33)

where ν denotes the outer unit normal vector on ∂U .
The Proof of Green’s representation formula is left as exercise. Here we give

a short hint. The details can be easily fit in. For the reader who are not familiar
with this method, refer to [1] Chapter 2 or [2] Chapter 2 for details.

Fix x ∈ U , choose ε > 0 so small such that B(x, ε) ⊂ U , and apply the
Green’s formula on the region Vε := U \B(x, ε) to u(y) and Φ(y − x). We get∫
Vε

u(y)∆Φ(y−x)−Φ(y−x)∆u(y) dy =

∫
∂Vε

u(y)
∂Φ

∂ν
(y−x)−Φ(y−x)

∂u

∂ν
(y) dS(y)

(34)
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We know ∂Vε has two parts, by examining the integral over ∂B(x, ε) (some
strategy as in the proof of the claim), we can get formula (33).

We are interested in Dirichlet Problem and Neumann Problem. They are
formulated as below:

Dirichlet Problem

{
∆u = f on U

u = g on ∂U,
(35)

Neumann Problem

{
∆u = f on U
∂u
∂ν = g on ∂U.

(36)

Of course, Φ isn’t the fundamental solution for Dirichlet Problem for Laplace
equation.

Definition of Green’s function. Green’s function for the domain U is

G(x, y) := Φ(y − x)− φx(y) (x, y ∈ U, x 6= y), (37)

where φx(y) is a corrector function satisfies{
∆φx = 0 in U

φx = Φ(y − x) on ∂U
(38)

Apply Green’s formula to φx(y) and u(y), we get

−
∫
U

φx(y)∆u(y) dy =

∫
∂U

u(y)
∂φx

∂ν
(y)− Φ(y − x)

∂u

∂v
(y) dS(y) (39)

Adding (39) to (33), we get

u(x) = −
∫
∂U

u(y)
∂G

∂ν
(x, y) dS(y)−

∫
U

G(x, y)∆u(y) dy (x ∈ U) (40)

For more details, refer to [1] and [2].
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