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This note is typed for Math 742 Geometric Analysis during the fall semester of
2013 at UMD and is based on Simon’s Stanford PDE notes and Evans’ PDE book.
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1. Second-Order Parabolic Equations

Second-order parabolic equations are natural generalizations of the heat equa-
tion and we will study in this section the existence, uniqueness, and regularity of
appropriately defined weak solutions.

1.1. Formulation of Weak Solutions.

1.1.1. Notations. In this note, we assume Ω to be an open, bounded domain in Rn,
and set ΩT = Ω× (0, T ].

We study the following initial/boundary-value problem

(1.1)


ut + Lu = f, in ΩT

u = 0, on ∂Ω× [0, T ]

u = g, on Ω× {t = 0}

where f(x, t) : ΩT → R and g(x) : Ω → R are given with u(x, t) : ΩT → R the
unknown function. L here is a time-independent second order differential operator
in divergence form

(1.2) Lu = −∂j(aij∂iu) + bi∂iu+ cu

for given coefficients aij , bi, c. Note that we assume the summation convention for
upper and lower indices.

We require that the differential operator L to be uniformly elliptic, i.e. there
exists a constant θ > 0 such that

(1.3) aij(x)ξiξj ≥ θ|ξ|2

for all x ∈ Ω, ξ ∈ Rn. Also, we assume self-adjointness of L by requiring aij = aji.

1.1.2. Weak Solutions. In order to find appropritate notion of weak solution to
initial/boundary-value problem (1.1), we first assume that

aij , bi, c ∈ L∞(Ω), f ∈ L2(ΩT ), g ∈ L2(Ω)

Also for u, v ∈ H1
0 (Ω), we have the following time-independent bilinear form

(1.4) B[u, v] :=

∫
Ω

aij∂iu∂jv + bi∂iuv + cuvdx

Further more, to better accomodate this evolution problem, we consider u(x, t),f(x, t),
u′(x, t) as mappings from [0, T ] into the functional triplet H1

0 (Ω) ⊂ L2(Ω) ⊂
H−1(Ω). Now we can state the following
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Definition 1.1. A fucntion

u ∈ L2(0, T ;H1
0 (Ω)) with u′ ∈ L2(0, T ;H−1(Ω))

is a weak solution of the parabolic initial-boundary problem (1.1) provided

(1.5) < u′, v >H−1 +B[u, v; t] = (f, v)L2

for each v ∈ H1
0 (Ω) and a.e. 0 ≤ t ≤ T , and

(1.6) u(x, 0) = g.

Remark 1.2. For more details about the functional spaces L2(0, T ;H1
0 (Ω)) and

L2(0, T ;H−1(Ω)), we refer the reader to Evans 5.9.2.

Remark 1.3. From Thm 3 in Evans 5.9.2, we know that u ∈ C([0, T ];L2(Ω)), hence
equation (1.6) makes sense.

1.2. Existence and Uniqueness. Now we state the general existence and unique-
ness result for the initial/boundary problem (1.6) with f = 0.

Theorem 1.4. Given g ∈ L2(Ω) and L as described above, there is a unique
u that solves the initial/boundary problem (1.1) in the sense of a weak solution.
Furthermore, if aij ∈ C∞(Ω), then u ∈ C∞(Ω× (0, T ]).

Proof. Key fact: the exponential decay of eigenvalues! First, let’s formally look for
separated-variable solutions a(t)b(x). By computation, we see that e−λjtϕj for any
fixed j ≥ 1 is such a solution. Here λj is the eigenvalue of L as an elliptic operator
and ϕj the corresponding complete orthonormal set of eigenfunctions. To solve our
initial/boundary value problem (1.1), we use the superposition principle, hence we
look for

(1.7) u(x, t) =

∞∑
j=1

cje
−λjtϕj(x)

Due to the initial condition it is clear that cj = (g(x), ϕj)L2(Ω).

Given the following estimate that λj ≥ C−1j
2
n for sufficiently large j and the

fact that
∑∞
j=1 c

2
j <∞, we can see that for any fixed t > 0, u(x, t) is a well defined

function in H1
0 (Ω), and because of the uniform boundedness of its H1-norm, the

series converges to a function in L2((0, T ], H1
0 (Ω)). Similarly we know that its weak

time derivative u′(x, t) also belongs to this space. What remained to prove is that
limt→0 u(x, t)→ g(x) in L2-norm and that uandu′ satisfy equation (1.5), which can
be easily checked. Hence finishes the proof of existence. �

The proof for uniqueness is left in class an exercise.

1.3. Regularity. Now we study the smoothness of our solution to problem (1.1).
Note that due to the negative exponentials in the power series

(1.8) u(x, t) =

∞∑
j=1

cje
−λjtϕj(x)

defining our solution, if we have regularity of each of the eigenfucntions ϕj in an
uniform fashion, then we can differentiate this series termwise as many times as we
want as long as t > 0, hence the power series solution belongs to C∞(Ω × (0, T )).
For this, we have the following regularity of ϕj based the elliptic regularity theory.
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Lemma 1.5. If ϕj are a complete orthonormal set of eigenfunctions for the oper-
ator L, where we assume the coercivity condition (C) and that the coefficients aij

are bounded and of C∞-class, then for any ball Bρ(y) ⊂ Ω and any θ ∈ (0, 1)

(1.9) ||ϕj ||q,Bθρ(y) ≤ C(θ, ρ, aij)j
2q
n , q ≥ 1, j ≥ 1

Furthermore, if we have regularity of ∂Ω and aij ∈ C∞(Ω
∞

), our ϕj will have
similar regularity up to the boundary of Ω.

Remark 1.6. For any integer l ≥ 0, we can find a q such that n/2+l ≤ q ≤ n/2+l+1,
then by Sobolev embedding theorem, we know that ϕj is of class Cl, hence of C∞-
class.

Now we the smoothness of the eigenfunctions as required, hence that of the
solution.

1.4. Heat Kernel and Weyl’s Theorem. Note that the above arguments can
all be modified to the case of Borel measure µ of compact support in place of the
initial data g, and in the particular case where µ = δy for any fixed y ∈ Ω, then the
solution u is given by

(1.10) p(x, y, t) :=

∞∑
j=1

e−λjtϕj(y)ϕj(x)

for x ∈ Ω and t > 0.
This fucntion p(x, y, t) is called the heat kernel for the operator L on the domain

Ω.

Remark 1.7. The heat kernel is unique as a consequence that the solution to (1.1)
is unique.

In case where aij is smooth on the domain Ω, we can approximate the heat
kernel by a sequence of functions {qi} in C∞(Ω× [0,∞)): take any sequence ψi ∈
C∞c (Ω)→ δy in the sense of Borel measure with y fixed, thus (ψi, ψ)L2 → ψ(y) for
each ψ ∈ C∞c (Ω). We also require that the support of ψi to be within the radius
1/i disk around y with ψi ≥ 0 everywhere. Natually, we define

(1.11) qi(x, y, t) =

∫
Ω

p(x, y, t)ψi(y)dy

Because of the uniform bound on the L1 norm of ψi and the sup-norm of ϕj on

any compact set K ⊂ Ω, we know that < ψi, ϕj >L2(Ω)≤ Cj
2k
n for sufficiently large

j with C depending on K and not on i, j. Hence

(1.12) qi(x, t) =

∞∑
j=1

< ψi, ϕj >L2(Ω) e
−λjtϕj(x)→ p(x, y, t)

uniformly on compact set K ⊂ Ω.
Now, we prove the following Weyl’s asymptotifc formula for eigenvalues λj for

the laplacian −4.

Theorem 1.8. For λ ∈ R, let Nλ denote the number of eigenvalues λj of −4
relative to Dirichlet boundary conditions which are ≤ λ, then

(1.13) Nλ ∼
λ
n
2 |Ω|

(4π)
n
2 Γ(n/2 + 1)
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In order to prove the theorem, we need first to get some asymptotic estimates of
the heat kernel on Ω, especially on the diagonal, then we will apply the Tauberian
theorem to conclude the proof.

First, we consider the heat kernel of Rn, denoted by

(1.14) K(x, y, t) :=
e−
|x−y|2

4t

4πtn/2

and just like the case of p(x, y, t), we can construct a sequence of ki(x, t) =
∫
Rn K(x, y, t)ψi(y)dy.

Our goal then is to show that when t → 0, p(x, y, t) is well approximated by
K(x, y, t), and the proof will use the following comparison:

Lemma 1.9. (Parabolic Maximum Principle) Suppose Ω is a bounded domain,

u ∈ C0(Ω× (0, T )) ∩ C2(Ω× (0, T )), and

(1.15) ut −4u ≤ 0

in Ω× (0, T ) with T > 0. Then for each t ≤ T ,

(1.16) supΩ×(0,t)u = sup(∂Ω×(0,t))∪(Ω×0)u

Proof. (Weyl’s asymptotic formula) Based on the definition of the qi and ki, we see
that qi(0) = ki(0) = ψ(x) on Ω and qi = 0 ≤ ki on ∂Ω× [0,∞), hence by Maximum
Principle to , we know that

(1.17) qi(x, t) ≤ ki(x, t) for all (x, t) ∈ Ω× (0,∞)

and

(1.18) sup
(x,t)∈Ω×(0,∞)

ki(x, t)− qi(x, t) ≤ sup(x,t)∈∂Ω×(0,∞)ki(x, t)

Then if we let t→ 0+, then we get the following inequalities for fixed y

(1.19) p(x, y, t) ≤ K(x, y, t) for all (x, t) ∈ Ω× (0,∞)

and

(1.20) sup
(x,t)∈Ω×(0,∞)

K(x, y, t)− p(x, y, t) ≤ sup(x,t)∈∂Ω×(0,∞)K(x, y, t)

Now, since it is the
∫

Ω
p(x, x, t)dx =

∑
j e
−λjt that we are interested in, we look

at the following set Ωσ := {x ∈ Ω|dist(x, ∂Ω) > σ}.Then it is easy to see that for
y ∈ Ωσ

(1.21) 0 ≤ K(y, y, t)− p(y, y, t) ≤ supt∈(0,∞)
e−

σ2

4t

4πtn/2
∼ C(n)σ−n

and

(1.22) 0 ≤ p(y, y, t) ≤ K(y, y, t) =
1

4πtn/2

integrate over Ωσ and Ω respective and combine those inequalities, we get

(1.23) lim
t→0

1

4πtn/2

∞∑
j=1

e−λjt = |Ω|

By the Tauberian Theorem, we get our desired result. For reference, please check
Feller Vol. 2, p.443, Th. 1.
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