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1. Some Preliminary Results

In this note, we will present a proof of Moser-Harnack inequality for weak solution u
of the following homogeneous second-order elliptic PDE:

(1.1) Lu =

n∑
i, j=1

D j(ai j(x)Diu(x)) = 0

with ||ai j||∞ < ∞ and boundedness and uniform ellipticity condition on L, i.e. there exist
0 < λ ≤ Λ < ∞ such that

(1.2) λ|ξ|2 ≤ ai jξiξ j ≤ Λ|ξ|2

for all ξ in a bounded domain Ω ⊂ Rn.

Definition 1.1. A function u ∈ W1,2(Ω) is called a wek subsolution of L if for all ψ ∈
H1

0(Ω) ≥ 0 a.e.,

(1.3)
∫

Ω

ai jDiuDiψ dx ≤ 0

in this case, we write Lu ≥ 0. Similarly if we can define a supersolution if we have Lu ≤ 0.

Intuitively, we should think of u being convex and concave respectively.

Lemma 1.2. Let u be a classical solution, and f ∈ C2(R) convex, then f ◦u is a subsolution.

Proof. L( f ◦ u) = D j(ai j f ′(u)Di) = f ′′ai jDiuD ju + f ′Lu �

Now, we extend the above result to weak subsolutions. Here, we need to assume that
the sup-norm of | f ′| and | f ′′| are bounded, so we have Di( f ◦u) = f ′(u)Diu and Di( f ′◦u) =

f ′′(u)Diu and

(1.4)
∫

Ω

ai jDi( f ◦ u)D jψ =

∫
Ω

ai jDiuD j( f ′(u)ψ) −
∫

Ω

ai jDiuD ju f ′′(u)ψ

we see that if f ∈ C2(Ω) is convex with f ′ ≥ 0 then f ◦ u is a weak subsolution if u is a
weak solution.

Lemma 1.3. Let u ∈ W1,2(Ω) be a weak subsolution of L, and k ∈ R. Then ν :=
max(u(x), k) is a weak subsolution.

Now we can state the main result of this note
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Theorem 1.4. Let u be a subsolution in the ball B(x0,R) ⊂ Rn and p > 2, then

(1.5) sup
B(x0,θR)

u ≤ c1(
1

|B(x0,R)|

∫
B(x0,R)

(u+)p dx)1/p

where u+ := max{u(x), 0} and c1 only depends on λ,Λ and n, θ, p.
Similarly, we have

Theorem 1.5. Let u be a positive supersolution in B(x0,R) and there exists 0 < p0 <
n

n−2
with n ≥ 3 such that

(1.6) (
1

|B(x0,R)|

∫
B(x0,R)

up0 dx)1/p0 ≤ c2 inf
B(x0,θR)

u

with c2 depends only on λ,Λ and n.

Remark 1.6. Take u := min{|x|2−n, k} for any given k, and take L = ∆ in Rn, since ∆u = 0 on
Rn−{0}, it is a weak supersolution, but we see clearly that as k blows up, the n/(n−2)-norm
of u also goes to infinity. Hence the condition that p < n/(n − 2) is necessary.

Now combining these two theorems and we get the following Harnack type result:

Corollary 1.7. Let u be a postivie weak solution of Lu = 0 in the ball B(x0, 4R),

(1.7) sup
B(x0,R)

u ≤ c3 inf
B(x0,R)

u

with c3 depends only on λ,Λ and n.

Now if we apply a standard chain argument we get the following more general result
for any domain Ω

Corollary 1.8. Let u be a positive solution to Lu = 0 in the domain Ω, then for any
compact sub-domain Ω0 ⊂ Ω, we have

(1.8) sup
Ω0

≤ c3 inf
Ω0

u

with c3 depends only on λ,Λ, n and Ω0 ⊂ Ω.

Before we proceed to the proof of our theorems, let’s state two useful lemmas first.

Lemma 1.9.

(1.9) lim
p→∞

(
?

B(x0,R)
up dx)1/p = sup

B(x0,R)
u

and

(1.10) lim
p→−∞

(
?

B(x0,R)
up dx)1/p = inf

B(x0,R)
u

Proof. An direct application of Holder equality and the definition of essential supremum.
�

Lemma 1.10. Let u be a positive subsolution in Ω, and for q > 1/2, set ν := uq ∈ L2(Ω),
for any η ∈ H1

0(Ω), we have

(1.11)
∫

Ω

η2|Dν|2 ≤
Λ2

λ2 (
2q

2q − 1
)2
∫

Ω

|Dη|2ν2
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Proof. Take f (u) := u2q, clearly if u is a weak subsolution, so is f (u) by Lemma 1.2. By
take the following cleverly chosen test function ψ := f ′(u)η2, we have

(1.12)
∫

Ω

ai jDiuD jψ =

∫
Ω

2|q|(2q − 1)u2q−2η2ai jDiuD ju +

∫
Ω

4|q|u2q−1ηai jDiuD jη ≤ 0

By uniform ellipticity of ai j and Young’s inequality to the last term above,

(1.13) 2|q|(2q − 1)λ
∫
|Du|2u2q−2η2 ≤ 2|q|Λε

∫
|Du|2u2q−2η2 +

2|q|Λ
ε

∫
u2q|Dη|2

Pick ε =
2q−1

2
λ
Λ

, we get the desired result. �

We are now in the position to prove Theorem 1.4.

Remark 1.11. The theorem is true even if u is not bounded. However, for the sake of
simplicity, we assume that u is essentially bounded. Note that the inequality in the theorem
is scaling invariant, hence we could assume that R = 1 and x0 = 0. Also, we can assume
that u is positive, otherwise we look at vk = max{k, u} and then use a sequence argument
for k → 0, or directly look at u+.

Proof. First, assume p ≥ 2. For any test function η, we have

(1.14)
∫

B1

ai jDiuD jη ≤ 0

Let ν := η2up−1 with η ∈ C∞0 (BR), we have

(1.15) (p − 1)
∫

BR

ai jDiuD juup−2η2 dx ≤ −2
∫

BR

ai jup−1ηDiuD jη dx

Again, by uniform ellipticity of ai j and Young’s inequality, there is a constant C such that

(1.16)
∫

BR

|D(ηup/2)|2 dx ≤ C
∫

BR

|Dη|2up dx

Using Sobolev inequality, we get

(1.17) (
∫

BR

(ηup/2)2∗ )
2

2∗ ≤ C
∫

BR

|Dη|2up dx

where 2∗ = 2n/(n − 2).
Let Rk = R(θ + 1−θ

2k ) with ηk ∈ C∞0 (BRk ) such that

(1.18)


ηk = 1 on BRk+1

η = 0 on Rn − BRk

|Dηk | ≤
2k+1

(1−θ)R

In a more compact way, the above inequality can then be expressed as the following

(1.19) ||u|| np
n−2

(BRk+1 ) ≤ (C4k)1/p||u||p(BRk )

Take pk = ( n
n−2 )k p, we thus have

(1.20) ||u||pk+1 (BRk+1 ) ≤ (C4k)1/pk ||u||pk (BRk )

Since

(1.21) log(
∞∏

k=1

(C4k)
1
pk ) < C



4 BO TIAN

We can then take k → ∞ and get

(1.22) ||u||∞(BθR) ≤
C

(R − θR)n/p

1
Rn ||u||p(BR)

Hence we get our desired inequality in Theorem 1.1.
�

We comment that the proof of Theorem 1.2 is similar in spirit with more complicated
iteration procedures, hence we omit here and refer the interested reader to Gilbarg and
Trudinger for more comprehensive treatment.
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