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The following notes are based upon Professor Yanir Rubenstein’s lectures with reference to

Variational Methods 4th edition by Struwe and A User’s Guide to Optimal Transport by Ambrosio

and Gigli.

1 Direct Method in the Calculus of Variations

THEOREM 1. Let X be a topological Hausdorff space, and suppose E : X → R ∪ {+∞} satisfies the

bounded compactness condition: For any α ∈ R the sublevel set, Kα = {u ∈ X : E(u) ≤ α} is

compact. Then there exists a uniform real constant CX on X such that E ≥ CX on X and E attains its

infimum.

Proof. If E ≡ +∞ onX, then there is nothing to prove. So, assume E 6≡ +∞. Denote α = infu∈X E(u) ≥

−∞ and choose a strictly decreasing sequence (αm) such that αm ↘ α as m → ∞. Let Kαm
= {u ∈

X : E(u) ≤ αm}, then by assumption Kαm
is compact. Moreover, it’s clear that Kαm+1

⊂ Kαm
for all

m ∈ N, i.e. we have a decreasing nesting of compact sets. By Cantor’s Intersection Theorem, we know

that

K =

∞⋂
m=1

Kαm
6= ∅.

Let u∗ ∈ K ⊂ X, then we observe (i) CX := E(u∗) 6= −∞ and (ii)

E(u∗) ≤ αm for all m.

Hence it follows E(u∗) ≤ α when passing through the limit which means E(u∗) = α. Thus E attains its

infimum in X.

DEFINITION 1. Let (V, ‖ · ‖V ) be a reflexive Banach space and X ⊂ V a subspace. Then E : X →

R ∪ {±∞} is coercive provided E(u)→∞ if ‖u ‖V →∞.

DEFINITION 2. E : X → R∪+∞ is said to be sequentially weakly lower semicontinuous over

X provided for every sequence (un)∞n=1 ⊂ X and (un)∞n=1 converges weakly V , un ⇀ u then

E(u) ≤ lim inf
n→∞

E(un).
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EXAMPLE 1. Consider the function E : R→ R given by

E(x) =


1

1 + x2
if x 6= 0

2 if x = 0.

It’s clear that E is not coercive since E(x) → 0 when |x| → ∞. Moreover, it is also clear that E is not

lower semi-continuous (in particular, not weakly l.s.c.) since

2 = E(0) 6≤ lim inf
n→∞

E(xn) = 1

where xn → 0 as n→∞. Also, note that E does not attain its minimium.

THEOREM 2 (Special Case of Theorem 1). Let (V, ‖ · ‖V ) be a reflexive Banach Space and let X ⊂ V

be a weakly closed subset of V . Assuming

(i) E : X → R ∪ {+∞} is coercive,

(ii) E is sequentially weakly lower semi-continuous.

Then E is bounded from below on X and attains its infimum in X.

Proof. Let α := infu∈X E(u) ≥ −∞. Similar to the proof of Theorem 1, we begin by choose a minimizing

sequence (αm) ⊂ X such that E(um)→ α as m→∞. Now, let us first make two claims:

(i) the sequence (um) is uniformly bounded in V ,

(ii) there exists a subsequence such that umk
⇀ u for some u ∈ V .

Since umk
⇀ u by (ii) and X is weakly closed, then we have that u ∈ X. Applying the fact that E is

weakly l.s.c., we have that

α ≤ E(u) ≤ lim inf
k→∞

E(umk
) = α

Hence E attains its minimium in X. Thus, to complete the proof we need to justify (i) and (ii).

Proof of Claim (i): This is immediate from the definition of coerciveness of E: E(um) 6→ ∞ implies

‖um ‖V 6→ ∞.

Proof of Claim (ii): Since V is reflexive, then by Theorem 8 in the Appendix we know that any closed

ball, B(0, R), of V is weakly compact. Since (um) is bounded in V by (i), then (um) ⊂ B(0, R) for some

R. Now, apply Theorem 6 in the Appendix, we see that (um) has a subsequence which converges weakly

to some u ∈ B(0, R) ⊂ V .

2 Some Examples and Applications
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2.1 p-Laplacian in Rn

Let u ∈W 1,p
0 (Rn), we informly defined the p-Laplacian as following

∆pu = ∇ · (|∇u|p−2∇u). (1)

Observe, we have that ∆p = ∆ the usual Laplacian on Rn when p = 2.

Note: We must check ∆pu is indeed well-defined on W 1,p
0 (Rn) since the p-Laplacian “requires” second

order (weak) derivatives of u. Observe for any φ ∈ C∞0 (Rn) we have that∣∣∣∣∫
Rn

∆pu(x)φ(x) dx

∣∣∣∣ :=

∣∣∣∣∫
Rn

|∇u(x)|p−2〈∇u(x),∇φ(x)〉Rn dx

∣∣∣∣
≤
∫
Rn

|∇u(x)|p−1|∇φ(x)| dx

≤ ‖∇φ ‖L∞
∫
Rn

|∇u(x)|p−1χ
supp(φ)

(x) dx

≤ Csupp(φ)‖∇φ ‖L∞‖∇u ‖p−1
Lp <∞.

Thus, to define the ∆pu in the distributional sense, we only need that ∇u ∈ Lp(Rn). Hence it is clear

that ∆pu is well-defined on W 1,p
0 (Rn).

Assuming Ω ⊂ Rn is a bounded domain and consider the Dirichlet problem:−∆pu = f in Ω

u = 0 on ∂Ω.

(2)

Claim: We claim −∆pu = f is the Euler-Lagrange equation of the function

E(u) =

∫
Ω

1

p
|∇u(x)|p − u(x)f(x) dx

where the Lagrangian, L : Rn × Rn × R −→ R, is given by

L(x, y, z) =
1

p
|y|p − zf(x).

Since the Euler-Lagrange equation to a function E[u] =
∫

Ω
L(x,Du(x), u(x)) dx is given by

Lz(x,Du, u)−
n∑
i=1

(Lyi(x,Du, u))xi = 0 (3)

then indeed we have that

−f(x)−∇ · (|∇u|p−2∇u) = −f(x)−
n∑
i=1

(
|∇u|p−1 uxi

|∇u|

)
xi

= 0.

Thus, informly, solving the Dirichlet problem (2) is similar to finding a minimizer for E in W 1,p
0 (Ω).
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THEOREM 3. Let p ∈ [2,∞) with conjugate q satisfying 1
p + 1

q = 1. Assume also f ∈ W−1,q(Ω)(:=

W 1,p(Ω)∗). Then there exists a weak solution u ∈W 1,p
0 (Ω) solving the Dirichlet problem (2).

Proof. Base upon the above discussion, let us show that E attains its minimium in W 1,p
0 (Ω). We shall

invoke Theorem 2, by checking that E satisfies coercivity and sequentially weakly l.s.c. over W 1,p
0 (Ω).

Coercivity of E: Observe by corollary 1 and the definition of the dual norm

E(u) =
1

p
‖u ‖p

W 1,p
0 (Ω)

−
∫

Ω

f(x)u(x) dx

≥ 1

p
‖u ‖p

W 1,p
0 (Ω)

− ‖ f ‖W−1,q(Ω)‖u ‖W 1,p
0 (Ω)

“Young’s Inequality” ≥ 1

p
‖u ‖p

W 1,p
0 (Ω)

− 1

2pp
‖u ‖p

W 1,p
0 (Ω)

− 2q

q
‖ f ‖qW−1,q(Ω)

= C‖u ‖p
W 1,p

0 (Ω)
− 2q

q
‖ f ‖qW−1,q(Ω)

where C > 0 and 2q

q ‖ f ‖
q
W−1,q(Ω) is independent of u. This shows that E is coercive over W 1,p

0 (Ω).

Sequentially Weakly L.S.C. of E: Consider a sequence (um) ⊂ W 1,p
0 (Ω) such that um ⇀ u ∈ W 1,p

0 (Ω).

Applying proposition 2(d) in the appendix with φ(x) = χΩ(x) and the fact that f ∈ W−1,q(Ω), then it

follows

E(u) ≤ lim inf
n→∞

E(um).

Thus, it is now clear that E is both coercive and weakly l.s.c. which means E attains its infimum in

W 1,p
0 (Ω). Lastly, we need to check that a minimium of E, say u, is a weak solution to problem (2). Let

φ ∈ C∞0 (Ω) and u a minimizer of E, since

d

dε

(
1

p
|∇u(x) + ε∇φ(x)|p − (u(x) + εφ(x))f(x)

)
=|∇u(x) + ε∇φ(x)|p−2〈∇u(x) + ε∇φ(x),∇φ(x)〉Rn − φ(x)f(x)

is bounded by some integrable function then by some variant of the Lebesgue Dominated Convergence

Theorem we have that

d

dε

∣∣∣∣
ε=0

E(u+ εφ) =
d

dε

∫
Ω

1

p
|∇u(x) + ε∇φ(x)|p − (u(x) + εφ(x))f(x) dx

∣∣∣∣
ε=0

=

∫
Ω

|∇u(x) + ε∇φ(x)|p−2〈∇u(x) + ε∇φ(x),∇φ(x)〉Rn − φ(x)f(x) dx

∣∣∣∣
ε=0

=

∫
Ω

|∇u(x)|p−2〈∇u(x),∇φ(x)〉Rn − φ(x)f(x) dx = 0

which indeed solves the weak formulation of problem (2).

2.2 Harmonic Maps into Rn -Generalizing Geodesics

Another important class of problem is finding minimal hypersurfaces in a Riemannian manifold (M, g)

(geodesics, etc) which has a variational formulation. Let Ω be a bounded domain in Rd, and M be a

compact subset of Rn with a symmetric positive-definite Riemannian metric g = (gij)1≤i,j≤N . Consider
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the u ∈ H1(Ω,Rn) and the functional

E(u) =
1

2

∫
Ω

gij(u(x))∇ui(x)∇uj(x) dx

we shall compute its Euler-Lagrange equation.

PROPOSITION 1. The Euler-Lagrange equation of E(u) is equivalent to

∆uk + Γjik∇u
i∇uj = 0 (4)

in Ω.

Proof. First, observe

Lpkl = gik
∂ui

∂xl
⇒ (Lpkl )xl = ∂jgik

∂uj

∂xl
∂ui

∂xl
+ gik

∂2ui

(∂xl)2

and

Lzk =
1

2
∂kgij∇ui∇uj .

Using the Euler-Lagrange equations for systems

n∑
l=1

(Lpkl (x, u,Du))xl
− Lzk(x, u,Du) = 0

we get that

−1

2
∂kgij∇ui∇uj + ∂jgik∇ui∇uj + gik∆ui = 0

or

∆uk + gik
(
∂jgik −

1

2
∂kgij

)
∇ui∇uj = ∆uk + Γjik∇u

i∇uj = 0

for k = 1, . . . , n.

EXAMPLE 2. If u is a solution to (4), then we say that u is a harmonic mapping from Ω ⊂ Rd to

(M, g). In particular, if d = 1, then we have that (4) is just the geodesic equations

ük + Γjiku̇
iu̇j = 0

where u : (0, 1)→M ⊂ Rn.

2.3 Optimal Transport in Rn

The subject of Optimal Transport will be “explain” in more details in subsequential lecture notes, we

shall only introduce the different formulations of the subject in this section.

DEFINITION 3. Given a Polish space (X, d) (i.e. a complete and separable metric space), we shall

denote P(X) the set of Borel probability measures on X. The support supp(µ) of a measure µ ∈P(X)

is the smallest closed set, C on which
∫
C
dµ = 1.
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DEFINITION 4. If X,Y are two Polish spaces, T : X → Y is a Borel measurable map, and µ ∈P(X)

a measure, the measure T#µ ∈P(Y ), called the push forward of µ through T is defined by

T#µ(E) = µ(T−1(E)), ∀ E ⊂ Y, Borel.

In particular, we have following characterization of T#µ:∫
E

f dT#µ =

∫
T−1(E)

f ◦ T dµ

for every Borel function f : Y → R∪{±∞} that is left hand side equals the right hand side provided one

of the integrals exists.

2.3.1 Monge’s Formulation of Optimal Transport Problem

Assume Ω1,Ω2 ⊂ Rn bounded and let µ, ν ∈ P(Rn) such that supp(µ) ⊆ Ω1 and supp(ν) ⊆ Ω2. Also

fix a Borel function c : Ω1 × Ω2 → R ∪ {+∞} which we shall call the cost function.

Monge’s Problem: Find T : Ω1 → Ω2 such that

T 7→
∫

Ω1

c(x, T (x)) dµ

is minimize among all T where T#µ = ν, i.e. minimize the functional

E(T ) =

∫
Ω1

c(x, T (x)) dµ

over the set {T : Ω1 → Ω2 Borel : T#µ = ν}.

EXAMPLE 3. Assume c(x, y) = |x − y|2. Consider Ω1 = B(0, 1) ⊂ R2 and Ω2 = B((2, 0), 1) ⊂ R2

where µ and ν are uniform measures over Ω1 and Ω2 respectively. Hence the Monge’s problem is asking

one to find a map T to recenter the unit ball which minimizes the total square distance traveled by each

point x ∈ B(0, 1) to T (x) ∈ B((0, 2), 1). It’s not hard to see that T is just the regular translation map

T (x) = x+ (2, 0).

Despite the intuitive formulation,Monge’s problem can be ill-posed because:

(i) No admissible T exists.

(ii) The constraints T#µ = ν is not weakly sequentially closed, with respect to any reasonable weak

topology.

First, lets consider the problem of (i). Observe if µ = δx0 ∈P(0, 1) a delta measure and ν ∈P(0, 1) is

a uniform measure, then we see that

T#µ 6= ν

because T#µ will also be a delta measure for all T , Borel.

The problem of (ii) can be readily seen in the following example
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EXAMPLE 4. Consider the 1-periodic function T : R→ R given by

T (x) =

1 if x ∈ [0, 1
2 )

−1 if x ∈ [ 1
2 , 1)

define the sequence Tn(x) := T (nx) for n ≥ 1. Assume µ := L |[0,1] the restricted Lebesgue measure and

ν :=
δ−1 + δ1

2
. To check that (Tn)#µ = ν for all n, it suffices to check it for open intervals. Suppose

(a, b) contains 1 and not -1, then

(Tn)#µ((a, b)) = L |[0,1] (T−1
n (a, b)) = L |[0,1]

(
n−1⋃
k=1

[
k

n
,

2k + 1

2n

)
∪
[
0,

1

n

))
=

1

2

and likewise when (a, b) contains -1 and not 1. If (a, b) contains both 1 and -1, then it’s clear that

(Tn)#µ((a, b)) = 1. Lastly, if (a, b) contains neither 1 nor -1, then (Tn)#µ((a, b)) = 0. This shows that

(Tn)#µ = ν for all open interval. Thus (Tn)#µ = ν for all Borel sets. Let f be a continuous function on

R, then consider

∫
R
Tn(x)f(x) dL |[0,1]=

∫
R
T (x)f

(x
n

) dL |[0,1]

n
=

∫ 1

0

T (x)f
(x
n

) dx
n
→ 0

as n → ∞ since T and f(x) is bounded in [0, 1], i.e. Tn ⇀ 0. Hence it follows for any g Borel, we have

that ∫
R
g d(0)#L |[0,1]=

∫ 1

0

g(0) dx = g(0)

which means (0)#µ = δ0 6= ν.

2.3.2 Kantorovich’s formulation

To overcome the difficulties in the previous examples, Kantorovich proposed an alternative formulation

of the optimal transport problem.

DEFINITION 5. We define the set of transport plan ADM(µ, ν) to be the set of Borel Probability

measures γ on X × Y , i.e. γ ∈P(X × Y ) such that

γ(A× Y ) = µ(A) ∀A ∈ B(X), γ(X ×B) = ν(B) ∀B ∈ B(Y )

Equivalently: πX#γ = µ, πY#γ = ν, where πX , πY are natural projection from X × Y onto X and Y

respectively.

Kantorovich’s Problem We minimize

γ 7→
∫
X×Y

c(x, y) dγ(x, y)

in ADM(µ, ν) where c(x, y) is the cost function.
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Remark: We shall see in later lectures how Kantorovich’s formulation puts the optimal transport

problem in the framework of calculus of variation.

3 Constraints and Variational Problems

3.1 Introducing Constraints to Variational Problems

Let us begin by look at the following Yamabe type problem: Assume Ω ⊂ Rn be a smooth bounded

domain. Choose p > 2 and if n ≥ 3 then assume p also satisfies the condition p < 2n
n−2 . Fix λ ∈ R and

consider the problem 
−∆u+ λu = |u|p−2u in Ω

u > 0 in Ω

u ≡ 0 on ∂Ω

. (5)

We shall begin our studies of problem (5) similar to how we did for the p-Laplacian Dirichlet problem.

Claim: −∆u+ λu = |u|p−2u is the Euler-Lagrange equation of the following functional

E(u) =

∫
Ω

1

2
(|∇u(x)|2 + λ|u(x)|2)− 1

p
|u(x)|p dx

where the Lagrangian is given by

L(x, y, z) =
1

2
(|y|2 + λz2)− 1

p
|z|p.

Indeed, we have

Lz(x,Du, u)−
n∑
i=1

(Lyi(x,Du, u))xi = λu− |u|p−1 sgn(u)−∇ ·
(
|∇u| ∇u

|∇u|

)
= ∆u+ λu− |u|p−2u.

Hence we have a found ourselves a functional in which we hope we can find it’s minimizer and use it to

show that problem (5) has a weak solution.

Note: However, the functional we have here is fundamentally different from the functional given in

problem (2). Here E is not coercive over H1
0 (Ω) ! Let u ∈ H1

0 (Ω) be a smooth bump function about a

ball B(x, r) ⊂ Ω such that u ≡ 1 on B(x, r) and vanish outside of Ω. Now, consider vn = αnu where

αn > 0 such that αn →∞ as n→∞. Hence ‖ vn ‖H1
0 (Ω) →∞, but

lim
n→∞

E(vn) = lim
n→∞

∫
Ω

α2
n

2
(|∇u(x)|2 + λ|u(x)|2)− αpn

p
|u(x)|p dx

= lim
n→∞

αn

∫
Ω

1

2
(|∇u(x)|2 + λ|u(x)|2)− αp−2

n

p
|u(x)|p dx = −∞

since p > 2 which means the integrand will eventually be negative. Due to the lack of coercivity, we can

not directly apply Theorem 2 to guarantee E has a minimium in H1
0 (Ω). However, a solution to problem
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(5) can be obtained via solving a constrained minimization problem for the functional

J(u) =
1

2

∫
Ω

(|∇u|2 + λ|u|2) dx

over H1
0 (Ω) restricted to the set X = {u ∈ H1

0 (Ω) :
∫

Ω
|u|p dx = 1}.

THEOREM 4. Suppose 0 < λ1 < λ2 ≤ λ3 ≤ . . . are the eigenvalues of the operator −∆ on H1
0 (Ω).

Then for any λ > −λ1 there exists a positive solution u ∈ C2(Ω) ∩ C0(Ω̄) to (5).

Proof. Consider the above discussion. Let us begin by showing that J satisfies both coercivity and

weakly lower semi-continuity over X = {u ∈ H1
0 (Ω) :

∫
Ω
|u|p dx = 1}.

Proof of weakly lower semi-continuity: Apply proposition 2 with φ(x) = χΩ(x), then we see that J is

indeed weakly lower semi-continuous.

Proof of coercivity: Using the Rayleigh formula

λ1 = inf
u∈H1

0 (Ω)
u6≡0

∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

we get that

J(u) =
1

2

∫
Ω

|∇u|2 +
λλ1

λ1
|u|2 dx

≥ 1

2

∫
Ω

|∇u|2 +
λ

λ1
|∇u|2 dx

=
1

2

(
1 +

λ

λ1

)
‖u ‖2H1

0 (Ω)

provided λ < 0 and J(u) ≥ 1
2‖∇u ‖

2
H1

0 (Ω)
if λ ≥ 0. Thus, this proves coercivity.

However, to apply Theorem 2, we still need to check that X is weakly closed in H1
0 (Ω).

Proof of Weakly Closedness of X: Applying Rellich-Kondrakov theorem, we see the injection H1
0 (Ω) ↪→

Lq(Ω) is a compact embedding (in particular, a continuous embedding) for p < 2n
n−2 , if n ≥ 3. For

the case n = 1, 2, we can apply Morrey’s inequality and show that H1
0 (Ω) ↪→ C0,γ(Ω) is a continuous

embedding. Since X is closed in both Lp(Ω) and C0,γ(Ω) accordingly with the respective dimensions,

then the preimage of the inclusion map shows that indeed X is closed with respect to the weak topology

of H1
0 (Ω). Hence Theorem 2 guarantee the existence of a minimizer for J in X, say u∗.

Since E(u) = E(|u|), we may assume u∗ ≥ 0. Note that J is continuously Frechet-differentiable and

d

dε

∣∣∣∣
ε=0

J(u+ εv) =
d

dε

∣∣∣∣
ε=0

1

2

∫
Ω

|∇u+ ε∇v|2 + λ|u+ εv|2 dx

“Dominated Conv. Theorem” =

∫
Ω

〈∇u+ ε∇v,∇v〉+ λ〈u+ εv, v〉 dx
∣∣∣∣
ε=0

=

∫
Ω

∇u∇v + λuv dx

= : 〈DJ(u), v〉
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Moreover, consider the function G : H1
0 (Ω)→ R given by

G(u) =

∫
Ω

|u(x)|p dx− 1

where p ≤ 2n
n−2 . It is also clear that G is continuously Frechet-differentiable with

〈DG(u), v〉 := p

∫
Ω

|u|p−2uv dx.

In particular, for any u ∈ X we have

〈DG(u), u〉 = p

∫
Ω

|u|p dx = p 6= 0.

Hence 0 is a regular value the G. Then by the Implicit Function Theorem for Banach Spaces, we have

X = G−1(0) is a C1-submanifold of H1
0 (Ω). Now applying Lagrange Multipler rule, there exists µ ∈ R

such that

〈DJ(u∗)− µDG(u∗), v〉 =

∫
Ω

(∇u∗∇v + λu∗v − µu∗|u∗|p−2v) dx = 0

for all v ∈ H1
0 (Ω). Therefore, if we set v = u∗, then we have that

〈DJ(u∗)− µDG(u∗), u∗〉 =

∫
Ω

(|∇u∗|2 + λ|u∗|2) dx− µ
∫

Ω

|u∗|p dx

= 2J(u∗)− µ = 0.

Then it follows from the inequality of the above coercivity argument that

µ = 2J(u∗) ≥ min

{
1, 1 +

λ

λ1

}
‖u∗ ‖H1

0 (Ω) > 0

since u∗ ∈ X, i.e. u∗ 6≡ 0 on Ω.

Rescaling u∗ to Obtain Weak Solution: Consider u = αu∗, then we see that

∫
Ω

∇u∇v + λuv − u|u|p−2v dx = α

∫
Ω

(∇u∗∇v + λu∗v − αp−2u∗|u∗|p−2v) dx

for all v ∈ H1
0 (Ω). Hence it follows that if α = µ

1
p−2 , then

∫
Ω

∇u∇v + λuv − u|u|p−2v dx = α

∫
Ω

(∇u∗∇v + λu∗v − µu∗|u∗|p−2v) dx = 0

for all v ∈ H1
0 (Ω). Thus u = µ

1
p−2u∗ is a candidate for a weak solution to problem (5). To show that u

is indeed a solution to problem (5), we must verify that u > 0 in Ω.

Regularity of u: Since u ∈ H1
0 (Ω), then by the Sobolev Embedding Theorem, we have that u ∈ L

2n
n−2 (Ω).

Now observe ∣∣∣u|u|p−2 − λu
∣∣∣ ≤ C(1 + |u|p−1)
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for some C > 0 where p− 1 > 1 and p− 1 < n+2
n−2 whenever n ≥ 3. Then it follows

∣∣∣u|u|p−2 − λu
∣∣∣ ≤ C 1 + |u|p−1

1 + |u|
(1 + |u|)

where ∫
Ω

(
1 + |u|p−1

1 + |u|

)n/2
dx =

∫
Ω∩{x:|u|≥1}

+

∫
Ω∩{x:|u|<1}

(
1 + |u|p−1

1 + |u|

)n/2
dx

≤ 2

∫
Ω∩{x:|u|≥1}

|u|n(p−2)/2 dx+ 2m(Ω) <∞

since u ∈ L
2n

n−2 (Ω) and L
n(p−2)

2 (Ω) ⊂ L
2n

n−2 (Ω). Thus, we are now in the position to apply Lemma to get

u ∈ Lq(Ω) for all q <∞. Moreover, it also follows that u|u|p−2−λu ∈ Lq(Ω) by the growth bound given

above. Thus by the Calderon-Zygmund inequality u ∈ W 2,q which then by Sobolev Embedding we get

that u ∈ W 2,q ∩ H1
0 (Ω) ↪→ C1,α(Ω). Using Schauder estimate, we conclude u ∈ C2(Ω). Finally, apply

strong maximum principle to conclude u > 0 in Ω. Remark: Schauder Theory and Maximum Principle

will be explained in details in subsequential lectures.

3.2 Inequality Constraints and Weak Sub/Super Solution

DEFINITION 6. A function g : X × R → R is called a Caratheodory function provided g(x, u) is

continuous with respect to x and measurable with respect to u.

Now, let us look at the problem: Suppose Ω ⊂ Rn, and let g : Ω × R → R be a Caratheodory

function with the property that there exists a measurable function h such that |g(x, u)| ≤ h(R) whenever

|u(x)| ≤ R almost everywhere. Given f ∈ H1
0 (Ω), then consider the problem

−∆u = g(·, u) in Ω

u = f on ∂Ω

. (6)

DEFINITION 7. Assume u ∈ H1
0 (Ω), then u is a weak subsolution (supersolution) to (6) if u ≤ f

(u ≥ f) on ∂Ω and

∫
Ω

∇u∇ϕ dx−
∫

Ω

g(·, u)ϕ dx ≤ 0 (≥ 0) for all ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

THEOREM 5. Assume (6) has weak sub and super solution u, u ∈ H1(Ω) and assume there exists

C1, C2 ∈ R such that −∞ < C1 ≤ u ≤ u ≤ C2 < ∞ holds a.e. in Ω. Then there exists a weak solution

u ∈ H1(Ω) to (6), satisfying the condition u ≤ u ≤ u a.e. in Ω.

Proof. Since f ∈ H1
0 (Ω), we may assume f ≡ 0. Let G(x, u) =

∫ u
0
g(x, v) dv denote a primitive of g.

Then it’s clear that problem (6) is actually the Euler-Lagrange equations of the functional

E(u) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

G(x, u) dx.

Like problem (5), we need to look at a subspace in which we can apply Theorem 2. Consider E restricted
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to

M = {u ∈ H1
0 (Ω) : u ≤ u ≤ u almost everywhere}.

Since u, u ∈ L∞ by assumption, then it follows M ⊂ L∞. Let u ≤ K. Hence by our conditions on g, we

have that ∣∣∣∣∣
∫ u(x)

0

g(x, v) dv

∣∣∣∣∣ ≤
∫ K

0

|g(x, v)| dv ≤ Kh(K) =: c

for almost every x ∈ Ω and h(K) is a constant the depends only on K. Let us now check for weakly

closedness of M , coercivity and weakly l.s.c. of E.

Weakly Closedness of M : Observe H1
0 (Ω) is reflexive (moreover, H1

0 (Ω) is a Hilbert space). By a general

fact in functional analysis: if E is a convex subset of a Hilbert space V such that E is closed with respect

to norm of V , then E is weakly closed. Therefore, it’s sufficient to prove that M is closed and convex.

First, observe M is convex since

tu ≤ tu ≤ tu and (1− t)u ≤ v(1− t) ≤ (1− t)u ⇒ u ≤ ut+ v(1− t) ≤ u.

Next, let us prove that M is closed with respect to the H1
0 (Ω) norm. Take {un} ⊂M such that un → u

in H1
0 (Ω). Since |un| ≤ max{|C1|, |C2|} a.e. on Ω, which has finite measure, then it’s clear that {un} is

dominated by a L2 function. Thus there exists unk
→ u a.e such that u(x) = limk→∞ unk

(x) ≤ u(x) a.e.

and likewise u(x) ≥ u(x) for almost every x. Therefore, M is closed with respect to H1
0 (Ω) which then

follows M is weakly closed.

Coercivity of E: Using the boundedness of G(x, u(x), we have that

E(u) ≥ 1

2
‖u ‖2H1

0 (Ω) − c.

Hence coercivity holds.

Weakly L.S.C. of E: We shall first show that

∫
Ω

G(x, um) dx→
∫

Ω

G(x, u) dx

whenever um ⇀ u in H1
0 (Ω). Then we can pass it to a subsequence, so WLOG assume um → u pointwise

almost everywhere. Since |G(x, um(x))| ≤ c, then we can apply Lebesgue Dominated Convergence

Theorem to get the desired results. Combining with proposition 2 where φ(x) = χΩ(x), then we see

that E is indeed weakly lower semi-continuous. Hence by Theorem 2 E has a minimizer in M . We shall

leave the verification of that u is a solution for problem (6) to the reader or consult [Struwe] pp. 17-18.

4 Appendix
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4.1 Functional Analysis

THEOREM 6 (Eberlin-Smulian). Let X be a subset of a Banach Space (V, ‖ · ‖V ). Then the following

statements are equivalent:

(i) X is weakly sequentially compact;

(ii) Every infinite subset of X has a weak limit point in V ;

(iii) Closure of X is weakly compact.

THEOREM 7 (Banach-Alaoglu). The closed unit ball of the dual space of V , V ∗ is compact in V ∗∗.

THEOREM 8. A Banach space V is reflexive if and only if its closed unit ball is weakly compact.

PROPOSITION 2. Define for any k > 1

F (u) =

∫
R
|u(x)|kφ(x) dx,

for some φ ∈ L∞(Rn) with φ ≥ 0. Then the following holds:

(i) F is convex.

(ii) F is continuous for the Lk norm.

(iii) F is sequentially lower semi-continuous for any Lp norm.

(iv) If un converges weakly to u in Lp then F is sequentially weakly lower semi-continuous.

Proof. (i) First, consider the function ψ(t) = tk for k > 1 and t ≥ 0. Observe that ψ(t) is C∞((0,∞))

and ψ′′(t) = k(k − 1)tk−2 > 0 on (0,∞). Thus, ψ(t) is a convex function on (0,∞). In particular,

we have that

|λ|u(x)|+ (1− λ)|v(x)||k ≤ λ|u(x)|k + (1− λ)|v(x)|k

for λ ∈ (0, 1). Then it follows that

F (λu+ (1− λ)v) =

∫
R
|λu(x) + (1− λ)v(x)|kφ(x) dx

≤
∫
R
λ|u(x)|kφ(x) + (1− λ)|v(x)|kφ(x) dx

= λ

∫
R
|u(x)|kφ(x) dx+ (1− λ)

∫
R
|v(x)|kφ(x) dx

= λF (u) + (1− λ)F (v).

Therefore, indeed F is a convex functional (Remark: convexity is trivial if everything blows up).

(ii) Let us begin by proving the following inequality

|xk − yk| ≤ k|x− y|(xk−1 + yk−1)
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for k > 1 and x, y ≥ 0. The inequality holds trivially in the case where either x = 0 or y = 0.

Therefore, assume neither x nor y are zero. Consider the function φ(t) = k(1− t)(1 + tk−1) + tk− 1

on [0, 1] and observe that φ(0) = k − 1 > 0.

Consider the case k ≥ 2 and observe that

φ′(t) = k(k − 1)(1− t)tk−2 − k

for t ∈ (0,∞). Now, consider the following function

ψ(t) =
1

tk−2(1− t)

on (0, 1). Observe

ψ′(t) =
(k − 1)t− (k − 2)

tk−1(1− t)2

on (0, 1). Notice, that ψ(t) as a critical point at t0 = k−2
k−1 in (0, 1) which in this case is a minimum

for ψ(t). Hence it follows that

ψ(t) ≥ ψ(t0) = k − 1 equivalently (k − 1)(1− t)tk−2 ≤ 1

for t ∈ (0, 1). Thus it follows that φ′(t) ≤ 0 on (0, 1). Hence φ(1) ≤ φ(t) for all t ∈ [0, 1], i.e.

φ(t) ≥ 0 on [0, 1].

Now consider the case 1 < k < 2, then we have that

φ′′(t) =
−k(k − 1)((k − 1)t+ (2− k))

t3−k
≤ 0

on (0, 1). This means that φ(t) is a concave function which means

φ(t) ≥ (1− t)φ(0) + tφ(1) = (1− t)(k − 1) ≥ 0

for all t ∈ (0, 1). Hence we have established the fact that φ(t) ≥ 0 on [0, 1] for all k > 1.

Since y > x > 0 where
x

y
∈ (0, 1), then it follows by plugging

x

y
in to φ(t) that

k (x− y)
(
yk−1 + xk−1

)
≤ xk − yk ≤ yk − xk ≤ k (y − x)

(
yk−1 + xk−1

)
or

|xk − yk| ≤ k|x− y|(xk−1 + yk−1).

With the above inequality, we are now ready to prove the continuity of F . Observe, if k′ is the
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conjugate of k, R = max{‖u ‖k, ‖ v ‖k} and φ(x) ≤M , then it follows that

|F (u)− F (v)| =
∣∣∣∣∫

R
(|u(x)|k − |v(x)|k)φ(x) dx

∣∣∣∣
≤ M

∫
R

∣∣|u(x)|k − |v(x)|k
∣∣ dx

≤ kM

∫
R

∣∣|u(x)| − |v(x)|
∣∣(|u(x)|k−1 + |v(x)|k−1) dx

≤ kM

∫
R
|u(x)− v(x)|(|u(x)|k−1 + |v(x)|k−1) dx

≤ kM‖u− v ‖k‖ |u|k
′
+ |v|k−1 ‖k′

≤ kM‖u− v ‖k(‖uk−1 ‖k′ + ‖ vk−1 ‖k′)

= kM‖u− v ‖k(‖u ‖k−1
k + ‖ v ‖k−1

k )

≤ 2kMRk−1‖u− v ‖k.

This shows that F is continuous with respect to the Lk-norm.

(iii) Consider sequence {un} in Lp such that un → u in Lp. Let

α = lim inf
n→∞

F (un),

then we know that there exists a subsequence {F (uσ(n))}∞n=1 such that limn→∞ F (uσ(n)) = α.

However, since un → u in Lp then we also have that uσ(n) → u. Hence it follows that there exists

a sub-subsequence {uτ◦σ(n)} such that uτ◦σ(n) → u a. e. Now, apply Fatou’s lemma, we get that

∫
R
|u(x)|kφ(x) dx ≤ lim inf

n→∞

∫
R
|uτ◦σ(n)(x)|kφ(x) dx

= lim
n→∞

∫
R
|uτ◦σ(n)(x)|kφ(x) dx

= lim
n→∞

F (uτ◦σ(n))

= lim
n→∞

F (uσ(n)) = α.

Hence we have that F (u) ≤ lim infn→∞ F (un), i.e. F is lower semi-continuous with respect to any

Lp-norm.

(iv) Since 1 < p <∞, then (Lp(Rn))∗ = Lq(Rn) is separable by Theorem 7.4.11 in Royden-Fitzpatrick.

Now, applying the fact that F is convex from (a) and F is lower semi-continuous with respect to

Lp-norm for 1 < p < ∞, from (b) then it follows that F is lower semi-continuous with respect to

the weak-Lp topology, i.e., if un ⇀ u in Lp, then

F (u) ≤ lim inf
n→∞

F (un).

Thus, we have our desired conclusion.
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4.2 Partial Differential Equations

THEOREM 9 (Poincare’s inequality). Assume Ω is a bounded, open subset of Rn. Suppose u ∈

W 1,p
0 (U) for some 1 ≤ p < n. Then we have the estimate

‖u ‖Lq(Ω) ≤ C‖Du ‖Lp(Ω)

for each q ∈ [1, np
n−p ], the constant C depending only on p, q, n and U . In particular, for all 1 ≤ p ≤ ∞,

‖u ‖Lp(Ω) ≤ C‖Du ‖Lp(Ω).

COROLLARY 1. Assume Ω is a bounded, open subset of Rn, then ‖ · ‖W 1,p
0 (Ω) is equivalent to ‖ · ‖Lp(Ω).

In particular, we could replace ‖ · ‖W 1,p
0 (Ω) with

‖u ‖ =

(∫
Ω

|∇u|p dx
)1/p

as the norm for W 1,p
0 (Ω).

DEFINITION 8 (Norm on (W 1,p
0 (Ω))∗).

If f ∈ (W 1,p
0 (Ω))∗, then the norm is defined by

‖ f ‖(W 1,p
0 (Ω))∗ = sup

{
〈f, u〉 : u ∈W 1,p

0 (Ω), ‖u ‖W 1,p
0 (Ω) ≤ 1

}
.

LEMMA 1.
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