
Bochner Technique:

Most of this heavily references Peter Petersen's Riemannian Geometry book. [Left to put in: Proof of
Killing's Equation, Relationship of Lie algebra of Killing �elds to Lie algebra of the isometry group of M ]

A vector �eld X is Killing if the local �ows generated by X act by isometries. We will prove the following
theorem:

Theorem 1.5: (Bochner, 1946) Suppose (M, g) is compact, oriented, and has Ric ≤ 0. Then every

Killing �eld is parallel. Furthermore, if Ric < 0, then there are no nontrivial Killing �elds.

The theorem is important because it constrains the isometry group of (M, g). For instance if Ric < 0,
then the isometry group of M is �nite.

Now suppose X is a Killing �eld. Let f = 1
2 |X|

2
= 1

2 〈X,X〉. We would like to produce the following
formula which will help us prove the theorem:

∆f = −Ric (X,X) + |∇X|2 . (1)

Some Explanation of the formula:

1.) Here Ric is the Ricci Curvature, which is the metric contraction of the Curvature tensor R in the 1
and 4 places: (if {ei} is an orthonormal basis of TpM)

Ric (V,W ) =
∑
i

〈R (ei, V )W, ei〉 .

2.) |∇X| is the Euclidean norm of the (1, 1)-tensor ∇X, which we view as a linear endomorphism
∇X : TM → TM , given by

(∇X) (v) = ∇vX.

In coordinates ∇X = ∂
∂xiX

jEj ⊗ σi +XjΓkij · Ek ⊗ σi.
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Brief Review of the Euclidean norm:

Let T be a (1, 1)-tensor which we interpret as an endomorphism T : TM → TM and is given in coordinates
by

T ij · Ei ⊗ σj .

In general the Euclidean norm of T is given by

|T | =
√
tr (T ◦ T ∗)

where T ∗ : TM → TM is the adjoint of T (here interpreted after type change using the metric g). [T ∗ would
be a map from T ∗M → T ∗M of the form

T ji · σ
i ⊗ Ej ,

but since TpM is an inner product space w.r.t. g, we can make the identi�cations

σi 7→ gijEj

Ej 7→ gjiσ
i

which converts T ∗ to a map from TM → TM :

T ji gjkg
il · El ⊗ σk.]

So

(T ◦ T ∗) (Et) = (T rs · Er ⊗ σs)
((
T ji gjkg

il · El ⊗ σk
)

(Et)
)

= (T rs · Er ⊗ σs)
(
T ji gjtg

il · El
)

= T rl T
j
i gjtg

il · Er

which means that
(T ◦ T ∗) = T rl T

j
i gjtg

il · Er ⊗ σt

so that the trace is just
tr (T ◦ T ∗) = T rl T

j
i gjrg

il.

3.)∆f is the Laplacian of f :
div (grad f)

where gradf is the vector �eld de�ned such that

〈grad f, V 〉 = V (f) = DV f

for all vector �elds V , and div X is the trace of the linear map Y 7→ ∇YX. In coordinates this map is given
by

∂

∂xj
(
Xi
)
Ei ⊗ σj +XiΓkji · Ek ⊗ σj ,

and the trace is given by ∂
∂xi

(
Xi
)

+XiΓjji.
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For the following we need Killing's equation: If X is a Killing �eld on M then

〈∇YX,Z〉+ 〈∇ZX,Y 〉 = 0.

We �rst de�ne a skew-adjoint (1,1)-tensor by T (v) = ∇vX. To be skew-adjoint means that ∀ v, w ∈ TpM :

〈T (v) , w〉 = −〈v, T (w)〉 or equiv. 〈T (v) , v〉 = 0

To show Formula (1) we prove the following in sequence:

(1) grad f = ∇f = −T (X) = −∇XX:

〈gradf, V 〉 = V (f)

=
1

2
V 〈X,X〉

=
1

2
(〈∇VX,X〉+ 〈X,∇VX〉)

= 〈∇VX,X〉
= −〈∇XX,V 〉 .

(2) ∇2f = ∇ (grad f) = −T 2 −∇XT −RX (where RX (V ) = R (V,X)X):

Apply ∇2f to a vector �eld V :(
∇2f

)
(V ) = ∇V (−∇XX)

= −R (V,X)X −∇X∇VX −∇[V,X]X

which comes from the de�nition of the curvature tensor. This equals

= −RX (V )−∇X∇VX +∇∇XVX −∇∇VXX

because [V,X] = ∇VX −∇XV , since ∇ is symmetric. Since T ◦ T (V ) = T (∇VX) = ∇∇VXX, this equals

= −RX (V )− T ◦ T (V )−∇X∇VX +∇∇XVX.

Leibnitz Rule for covariant derivatives of tensors:

Because we require that
∇X (T (V )) = (∇XT ) (V ) + T (∇XV )

we have that
(∇XT ) (V ) = ∇X∇VX −∇∇XVX

so (
∇2f

)
(V ) = − (RX) (V )−

(
T 2
)

(V )− (∇XT ) (V )

which shows (2).

(3) We take the trace of ∇2f = −T 2 −∇XT −RX , to get

∆f = −Ric (X,X) + |T |2 = −Ric (X,X) + |∇X|2:
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This is because of 3 facts:

For skew symmetric (1,1)-tensors (in coordinates T = T ij · Ei ⊗ σj ):

(a) T ∗ = −T . Which implies that tr
(
−T 2

)
= tr (T ◦ T ∗) = |T |2.

(b) tr (T ) := T ii = 0.
(c) The covariant derivative of T (in the direction of a vector �eld X) is also skew symmetric.

Proof of (b):

Let T be a (1, 1)-tensor that is skew-symmetric w.r.t. the metric g

〈T (v) , v〉 = 0 ∀v,

with components T ij written w.r.t. a frame and dual frame {Ei} and
{
σi
}
. We want to �rst transform T so

that it is w.r.t. an orthonormal basis
{
Ēi
}
w.r.t. g. Let A be such a coordinate tranformation matrix

Ēi = AjiEj .

Then the transformed components of T are given by

T̄ ij = AilT
l
k

(
A−1

)k
j
.

In our new frame it is of course still true that for any v〈(
T̄ ij · Ēi ⊗ σ̄j

)
(v) , v

〉
= 0.

Let v = Ēk for a �xed k. Then
0 =

〈(
T̄ ij · Ēi ⊗ σ̄j

) (
Ēk
)
, Ēk

〉
= T̄ kk

where the last expression is not meant to be a summation, but just the kth diagonal element of the matrix
T̄ ij . Since all diagonal elements of T̄ ij are 0, the trace of

(
T̄ ij · Ēi ⊗ σ̄j

)
is
∑
k T̄

k
k = 0. Now T̄ ij is related to

T ij by a similarity transformation A =⇒ tr
(
T ij
)

= 0 also.

Proof of (c):

That T is skew symmetric means that for any vector �eld v, 〈T (v) , v〉 ≡ 0 on M . So for any vector �eld X:

X 〈T (v) , v〉 = 0.

Then

0 = X 〈T (v) , v〉 = 〈∇X (T (v)) , v〉+ 〈T (v) ,∇Xv〉
= 〈(∇XT ) (v) + T (∇Xv) , v〉+ 〈T (v) ,∇Xv〉
= 〈(∇XT ) (v) + T (∇Xv) , v〉 − 〈v, T (∇Xv)〉
= 〈(∇XT ) (v) , v〉

where we used the skew adjointness of T to get from the 2nd to 3rd line. So ∇XT is skew symmetric also.

Before we go on we must have the following result which is proved using Stoke's theorem:
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If M is a compact oriented manifold, and dvol is the volume form, then for any smooth function f

ˆ
M

∆f dvol = 0.

We want to now use this result and our formula (1) to prove the theorem. We restate it:

Theorem 1.5: Suppose (M, g) is compact, oriented, and has Ric ≤ 0. Then every Killing �eld is parallel.

Furthermore, if Ric < 0, then there are no nontrivial Killing �elds.

Proof: Let X be a Killing Field and de�ne f = 1
2 |X|

2
. Since Ric ≤ 0

0 =

ˆ
M

∆f dvol

=

ˆ
M

(
−Ric (X,X) + |∇X|2

)
dvol

≥
ˆ
M

|∇X|2 dvol

≥ 0

so |∇X| ≡ 0, and X is parallel.

If in addition Ric < 0, then for Ric (V,W ) to equal 0, either V or W must be the 0 vector. This means
that Ric (X,X) ≡ 0 i� X ≡ 0. So X must be a trivial vector �eld.
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Ch. 6, L. Simon's Lectures in PDE:

We consider PDE's of the form ∑
|α|,|β|≤m

Dβ (aαβD
αu) =

∑
|β|≤m

Dβfβ (2)

where fβ are prescribed L2
loc

(Ω) functions and aαβ are locally bounded functions, aαβ ∈ L∞loc (Ω).
u is a weak solution to (1) if when we multiply each side by ζ ∈ C∞c (Ω), a test function, and integrate

we get equality: ˆ
Ω

∑
|α|,|β|≤m

(−1)
|β|
aαβD

αuDβζ =

ˆ
Ω

∑
|β|≤m

(−1)
|β|
fβD

βζ, (3)

written out after integration by parts.
Here we only consider regularity results on a ball BR (x0), where BR (x0) ⊂ Ω.

(E), an ellipticity condition: There exists a µ > 0 s.t.∑
|α|,|β|=m

aαβ (x)λαλβ ≥ µ
∑
|α|=m

(λα)
2

for all x ∈ Ω, and all collections of real numbers {λα}|α|=m.

(Bk) aαβ ∈W k,∞ (Ω) and there exists an M > 0 s.t.

|Dγaαβ (x)| ≤M a.e. x ∈ BR (x0) , |γ| ≤ k.

Our Main Theorem:

Theorem 1: Assume that in (1), fβ ∈ Hk (Ω). If u ∈ Hm (BR (x0)) is a weak solution of (1), if k ≥ 0,
and if (E) and (Bk) hold, then u ∈ Hm+k

loc
(BR (x0)) and

‖u‖m+k,BθR(x0) ≤ C

‖u‖m−1,BR(x0) +
∑
|β|≤m

‖fβ‖k,BR(x0)


for any choice of θ ∈ (0, 1), where C is a constant depending only on n,m, k, θ,M, µ.

Note: Since the Sobolev embedding theorem can be used to show for l with m + k > n/2 + l, that
Hm+k

loc
(BR (x0)) ⊂ Cl (Ω) and

|u|Cl(BR(x0)) ≤ C‖u‖m+k,BR(x0),

(this is the harder version of the embedding theorem) [Here C depends on ???] we can show that under the
conditions of Theorem 1, u ∈ Cl (BR (x0)).

We need to establish a helpful lemma:
Notation for Lemma:

(B) explicit boundedness of aαβ :

|aαβ (x) | ≤M, ∀ x ∈ BR (x0) , |α|, |β| ≤ m.

Lemma 1: If u ∈ Hm
loc

(Ω) is a weak solution of (1), and if (E) and (B) hold, and if BR (x0) ⊂ Ω, then for

each θ ∈ (0, 1) we have

‖u‖m,BθR(x0) ≤ C

‖u‖m−1,BR(x0) +
∑
|β|≤m

‖fβ‖k,BR(x0)

 ,

where C depends only on R,M,µ,m, n, θ.
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To prove Lemma 1 we need another lemma (also Lemma 1, but from section 5 of Simon's PDE's).
Pre-Lemma 1: If u ∈ Wm,p

loc
(Ω) amd if |α| ≤ m, then Dαuσ → Dαu pointwise a.e. in Ω, and also

locally w.r.t. the ‖ · ‖m,p norm in Ω.
(Here uσ is a molli�cation of u with respect to a sequence of molli�ers ρσ.)
Proof of Lemma 1:
We have to �rst show that if u is a weak solution to (1) then (2) will also be satis�ed when ζ = ϕh

with ϕ ∈ C∞c (Ω) and h ∈ Hm
loc

(Ω). This is true because ϕhσ ∈ C∞c (Ω) for su�ciently small σ and, by the
pre-lemma, limσ→0 ϕhσ = σh w.r.t. the Hm (Ω) norm: It will be true that

ˆ
Ω

∑
|α|,|β|≤m

(−1)
|β|
aαβD

αuDβ (ϕhσ) =

ˆ
Ω

∑
|β|≤m

(−1)
|β|
fβD

β (ϕhσ)

by de�nition of weak solution, and since ∑
|β|≤m

ˆ ∣∣Dβ (ϕhσ)−Dβ (ϕh)
∣∣21/2

→ 0 as σ → 0

we get ˆ
Ω

∑
|α|,|β|≤m

(−1)
|β|
aαβD

αuDβ (ϕh) =

ˆ
Ω

∑
|β|≤m

(−1)
|β|
fβD

β (ϕh) .

Now make the careful choice h = u, and we get

ˆ
Ω

∑
|α|,|β|≤m

(−1)
|β|
aαβD

αu

 ∑
γ+δ=β

β!

γ!δ!
DγuDδϕ

 =

ˆ
Ω

∑
|β|≤m

(−1)
|β|
fβ

 ∑
γ+δ=β

β!

γ!δ!
DγuDδϕ

 .

We now impose (E) and (B) to get (3/4):

ˆ
Ω

∑
|α|=m

|Dαu|2 ϕ ≤ m!

ˆ
Ω

∑
|β|≤m

|fβ | ∑
γ+δ=β

(
|Dγu|

∣∣Dδϕ
∣∣) (4)

+Mm!

ˆ
Ω

 ∑
|α|≤m

|Dαu|

 ∑
|δ|≤m,|γ|≤m−1

(
|Dγu|

∣∣Dδϕ
∣∣) (5)
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Details:
Set Dαu = λα in (E), and multiply both sides by ϕ (which is positive) gives

µ

ˆ
Ω

∑
|α|=m

(Dαu)
2
ϕ ≤
ˆ

Ω

∑
|α|,|β|=m

aαβ (Dαu)
(
Dβu

)
ϕ.

Now adding and subtracting some equal terms gives

ˆ
Ω

∑
|α|,|β|=m

aαβ (Dαu)
(
Dβu

)
ϕ =

ˆ
Ω

∑
|α|,|β|=m

aαβ (Dαu)
(
Dβu

)
ϕ

+

ˆ
Ω

∑
|α|,|β|=m

(−1)
|β|
aαβD

αu

 ∑
γ+δ=β,|δ|≥1

β!

γ!δ!
DγuDδϕ


+

ˆ
Ω

∑
|α|<m or |β|<m

(−1)
|β|
aαβD

αu

 ∑
γ+δ=β

β!

γ!δ!
DγuDδϕ


−
ˆ

Ω

∑
|α|,|β|=m

(−1)
|β|
aαβD

αu

 ∑
γ+δ=β,|δ|≥1

β!

γ!δ!
DγuDδϕ


−
ˆ

Ω

∑
|α|<m or |β|<m

(−1)
|β|
aαβD

αu

 ∑
γ+δ=β

β!

γ!δ!
DγuDδϕ


=

ˆ
Ω

∑
|α|,|β|≤m

(−1)
|β|
aαβD

αu

 ∑
γ+δ=β

β!

γ!δ!
DγuDδϕ


−
ˆ

Ω

∑
|α|,|β|=m

(−1)
|β|
aαβD

αu

 ∑
γ+δ=β,|δ|≥1

β!

γ!δ!
DγuDδϕ


−
ˆ

Ω

∑
|α|<m or |β|<m

(−1)
|β|
aαβD

αu

 ∑
γ+δ=β

β!

γ!δ!
DγuDδϕ


=

ˆ
Ω

∑
|β|≤m

(−1)
|β|
fβ

∑
γ+δ=β

(
β!

γ!δ!
DγuDδϕ

)
− the two negative terms in the previous line.

Taking absolute values and distributing across integrals and summations gives (3)

Let θ ∈ (0, 1), and choose ϕ to be a cuto� function with for the balls BθR (x0) and BR (x0) in the usual
sense:

ϕ ∈ C∞c (Ω) , 0 ≤ ϕ ≤ 1, ϕ ≡ 0 outside of BR (x0)

ϕ ≡ 1 on BθR (x0) , sup |Dδϕ| ≤ C ((1− θ)R)
−|δ|

for any multi-index δ with |δ| ≤ m [Our proof doesn't depend on the case where |δ| > m]. Also C can be
made to only depend on δ.

With such a ϕ we have that

sup
∣∣Dδϕ2m

∣∣ ≤ C ((1− θ)R)
−|δ|

ϕm, for any δ with |δ| ≤ m. (6)
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Details (by induction):
This comes down to an appropriate use of the chain rule for weak derivatives:

sup
∣∣Dδϕ2

∣∣ ≤ sup
∣∣2ϕDδϕ

∣∣ .
So

Dδϕ2(m+1) =
∑

α+β=δ

δ!

α!β!
Dα

(
ϕ2m

)
Dβ
(
ϕ2
)

so

sup
∣∣∣Dδϕ2(m+1)

∣∣∣ ≤ ∑
α+β=δ

C ((1− θ)R)
−|α|

ϕm · 2ϕC ((1− θ)R)
−|β|

ϕ

≤ C ′ ((1− θ)R)
−|δ|

ϕm+1

for some new constant C ′.

Now (3) will also hold for the C∞c (Ω) function ϕ′ = ϕ2m. If we substitute then ϕ2m in place of ϕ in
(3/4), and use (5) twice we get:

new LHS =

ˆ
BR(x0)

∑
|α|=m

|Dαu|ϕ2m

≤ m!

ˆ
BR(x0)

∑
|β|≤m

|fβ | ∑
γ+δ=β

(
|Dγu|

∣∣Dδϕ2m
∣∣)

+Mm!

ˆ
BR(x0)

 ∑
|α|≤m

|Dαu|

 ∑
|δ|≤m,|γ|≤m−1

(
|Dγu|

∣∣Dδϕ2m
∣∣)

≤ m!

ˆ
BR(x0)

 ∑
|α|≤m

|Dαu|

 ∑
|β|≤m

|fβ |ϕm · sup
|δ|≤m

{
C ((1− θ)R)

−|δ|
}

+Mm!

ˆ
BR(x0)

 ∑
|α|≤m

|Dαu|

 ∑
|γ|≤m−1

(|Dγu|ϕm) · sup
|δ|≤m

{
C ((1− θ)R)

−|δ|
}

≤ C

ˆ
BR(x0)

 ∑
|α|≤m

|Dαu|ϕm
 ∑

|γ|≤m−1

|Dγu|+
∑
|β|≤m

|fβ |


for some new constant C which depends on M,µ, θ,R,m, n.

Rewrite the last line as

C

ˆ
BR(x0)

 ∑
|α|=m

|Dαu|ϕm
 ∑

|γ|≤m−1

|Dγu|+
∑
|β|≤m

|fβ |

 (7)

+C

ˆ
BR(x0)

 ∑
|α|≤m−1

|Dαu|ϕm
 ∑

|γ|≤m−1

|Dγu|+
∑
|β|≤m

|fβ |

 (8)

Term (6) is the same as

C

ˆ
BR(x0)

 ∑
|α|=m,|γ|≤m−1

|Dαu|ϕm |Dγu|

+ C

ˆ
BR(x0)

 ∑
|α|=m,|β|≤m

|Dαu|ϕm |fβ |


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Now use Cauchy's inequality ab ≤ εa2/2 + b2/(2ε) on these terms, to show that they are less than

2CKε

ˆ
BR(x0)

∑
|α|=m

|Dαu|2 ϕ2m +
CK

2ε

ˆ
BR(x0)

 ∑
|γ|≤m−1

|Dγu|2 +
∑
|β|≤m

|fβ |2


where K = number of multi-indices ≤ m. Do the same for term (7) to get that it is ≤:

2CKε

ˆ
BR(x0)

∑
|α|≤m−1

|Dαu|2 ϕ2m +
CK

2ε

ˆ
BR(x0)

 ∑
|γ|≤m−1

|Dγu|2 +
∑
|β|≤m

|fβ |2


Use this to write

ˆ
Ω

∑
|α|=m

|Dαu|2 ϕ2m ≤ 2CKε

ˆ
BR(x0)

∑
|α|=m

|Dαu|2 ϕ2m +
CK

2ε

ˆ
BR(x0)

 ∑
|γ|≤m−1

|Dγu|2 +
∑
|β|≤m

|fβ |2


+2CKε

ˆ
BR(x0)

 ∑
|α|≤m−1

|Dαu|2 ϕ2m

+
CK

2ε

ˆ
BR(x0)

 ∑
|γ|≤m−1

|Dγu|2 +
∑
|β|≤m

|fβ |2
 .

We can pull over the 1st and 3rd term on the RHS to the other side, and add in to both sides

+

ˆ
BR(x0)

 ∑
|α|≤m−1

|Dαu|2 ϕ2m


to get

(1− 2CKε)

ˆ
Ω

∑
|α|≤m

|Dαu|2 ϕ2m ≤
(
CK

ε
+ 1

)ˆ
BR(x0)

 ∑
|γ|≤m−1

|Dγu|2 +
∑
|β|≤m

|fβ |2


=⇒ (with appropriate choice of ε)

ˆ
Ω

∑
|α|≤m

|Dαu|2 ϕ2m ≤ C ′
ˆ
BR(x0)

 ∑
|γ|≤m−1

|Dγu|2 +
∑
|β|≤m

|fβ |2


for some new constant C ′ depending on M,µ, θ,R,m, n. This implies Lemma 1.

For the proof of the Theorem we need some results about di�erence quotients:
If f is a real valued function de�ned on a domain Ω ⊂ Rn, a di�erence quotient in the j-th direction is

∆h
j f :=

f (x+ hej)− f (x)

h

de�ned on a domain Ω|h|. We need the following 6 facts (for h 6= 0):

(a) ∆h
j (f + g) = ∆h

j f + ∆h
j g on BR−|h| (x0)(Obvious)

(b) ∆h
j (fg) = g∆h

j f + f̃∆h
j g for f, g ∈ L1 (BR (x0)), and where f̃ (x) = f (x+ hej):

∆h
j (fg) =

1

h
(f (x+ hej) g (x+ hej)− f (x) g (x))

=
1

h
(f (x+ hej) g (x+ hej)− f (x+ hej) g (x) + f (x+ hej) g (x)− f (x) g (x))

= g∆h
j f + f̃∆h

j

10



(c) Dα∆h
j f = ∆h

jD
αf on BR−|h| (x0) and for f ∈ Hm (BR (x0)) and |α| ≤ m: This follows from

distributivity of the weak derivative.

(d) Integration by parts formula:

ˆ
BR(x0)

f∆h
j g dx = −

ˆ
BR(x0)

g∆−hj f dx

whenver f, g ∈ L1 (BR (x0)) and fg vanishes outside of BR−|h| (x0). By straight forward calculation:

ˆ
BR(x0)

f∆h
j g dx =

1

h

ˆ
BR(x0)

f (x) g (x+ hej)−
1

h

ˆ
BR(x0)

f (x) g (x)

and

−
ˆ
BR(x0)

g∆−hj f dx = −

[(
1

−h

)ˆ
BR(x0)

g (x) f (x+ hej)−
(

1

−h

)ˆ
BR(x0)

g (x) f (x)

]

=
1

h

ˆ
BR(x0)

g (y − hej) f (y)− 1

h

ˆ
BR(x0)

g (x) f (x)

which are the same after change of variables y = x+ hej .

(e) Our condition (Bk) implies:∣∣∆h
jD

γaαβ (x)
∣∣ ≤M a.e. x ∈ Ω|h|, |γ| ≤ k − 1.

(f) If v ∈ H l (BR (x0)) then
‖∆h

j v‖l−1,BR−|h|(x0) ≤ ‖v‖l,BR(x0)

Details of (e):
Because |γ| < k there exists one more weak derivative and we can write

∆h
j (Dγaαβ) =

1

h

ˆ h

0

DjD
γ (x+ tej) dt.

Suppose (for purposes of getting a contradiction) that

sup |DjD
γaαβ | < ∆h

j (Dγaαβ) .

Then

∆h
j (Dγaαβ) =

1

h

ˆ h

0

DjD
γ (x+ tej) dt

= Dj (Dγaαβ)

< ∆h
j (Dγaαβ)

which is a contradiction.
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Details of (f):
We show that ‖∆h

j v‖0,BR−|h|(x0) ≤ ‖Djv‖0,BR(x0)where v ∈ H1 (BR (x0)). This will show (f) by applying it

to each term in the H l−1 norm:

∣∣∆h
j v
∣∣ =

∣∣∣∣v (x+ hej)− v (x)

h

∣∣∣∣ ≤ 1

h

ˆ h

0

|Djv (x1, . . . , xj + τ, . . . xn)| dτ

≤ 1

h
· h1/2

(ˆ h

0

|Djv (x1, . . . , xj + τ, . . . xn)|2 dτ

)1/2

=⇒∣∣∆h
j v
∣∣2 ≤ 1

h

ˆ h

0

|Djv (x1, . . . , xj + τ, . . . xn)|2 dτ
=⇒ˆ

BR−|h|(x0)

∣∣∆h
j v
∣∣2 ≤ 1

h

ˆ
BR−|h|(x0)

ˆ h

0

|Djv|2 dτdx

≤ 1

h

ˆ h

0

ˆ
BR−|h|(x0)

|Djv|2 dxdτ

=
1

h

ˆ h

0

‖Djv‖0,BR−|h|(x0)dτ

= ‖Djv‖0,BR−|h|(x0) ≤ ‖Djv‖0,BR(x0)

Proof of Theorem 1:
(Case k = 1)
Choose h > 0 s.t. BR (x0) ⊂ Ω|h|. If ζ ∈ C∞c (Ω) then ∆−hj ζ ∈ C∞c

(
Ω|h|

)
and we can use it as our test

function in (2):
ˆ

Ω

∑
|α|,|β|≤m

(−1)
|β|
aαβD

αuDβ
(
∆−hj ζ

)
=

ˆ
Ω

∑
|β|≤m

(−1)
|β|
fβD

β
(
∆−hj ζ

)
using fact (c) ˆ

Ω

∑
|α|,|β|≤m

(−1)
|β|
aαβD

αu∆−hj
(
Dβζ

)
=

ˆ
Ω

∑
|β|≤m

(−1)
|β|
fβ∆−hj

(
Dβζ

)
using fact (d)

−
ˆ

Ω

∑
|α|,|β|≤m

(−1)
|β|

∆h
j (aαβD

αu)Dβζ = −
ˆ

Ω

∑
|β|≤m

(−1)
|β|

∆h
j (fβ)Dβζ

using fact (b) and (c)

−
ˆ

Ω

∑
|α|,|β|≤m

(−1)
|β| (

∆h
j (aαβ)Dαu+ ãαβD

α
(
∆h
j u
))
Dβζ = −

ˆ
Ω

∑
|β|≤m

(−1)
|β|

∆h
j (fβ)Dβζ

with some variable rebranding:
ˆ

Ω

∑
|α|,|β|≤m

(−1)
|β|
ãαβD

αvhD
βζ =

ˆ
Ω

∑
|β|≤m

(−1)
|β|
Fβ,hD

βζ (9)

where ãαβ (x) = aαβ (x+ hej), vh = ∆h
j u and

Fβ,h = ∆h
j (fβ)−

∑
|α|≤m

(
∆h
j aαβ

)
Dαu.
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Ah! Now we can use our helpful lemma (Lemma 1) on (8) [ãαβ still satis�es the ellipticity condition (E)
and boundedness (B) because it is just aαβ at a di�erent point in Ω.] For any θ ∈ (0, 1)

‖vh‖m,BθR(x0) ≤ C

‖vh‖m−1,BR(x0) +
∑
|β|≤m

‖Fβ,h‖0,BR(x0)

 ,

where C does not depend on h. Because of (e) and (f) [and remembering that we made some extra assump-
tions on fβ in the statement of the theorem: fβ ∈ Hk (Ω)] we have that

sup
BR−|h|(x0)

∣∣∆h
j aαβ

∣∣ ≤M and ‖∆h
j fβ‖0,BR−|h|(x0) ≤ ‖fβ‖1,BR(x0) (10)

which we use to rewrite an upper estimate of ‖Fβ,h‖0,BR(x0) by applying Cauchy's inequality:

‖Fβ,h‖0,BR(x0) ≤ ‖fβ‖1,BR(x0) +KM2‖u‖m,BR(x0).

This implies for some new constant C independent of h

‖vh‖m,BθR(x0) ≤ C

‖u‖m,BR(x0) +
∑
|β|≤m

‖fβ‖1,BR(x0)

 .

So we get that
lim sup
h↓0

‖vh‖m,BθR(x0)

exists and is less than some constant which depends on θ, and some other stu�. We now apply:
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Lemma 7 (Ch. 5):
If u ∈ L2

loc
(Ω), and if

lim sup
h↓0

‖∆h
j u‖L2(K) ≤ cK (<∞)

for each compact K ⊂ Ω. Then u has a weak derivative Dju ∈ L2
loc

(Ω), and ∆h
j u ⇀ Dju in the weak sense〈

∆h
j u, ϕ

〉
L2 → 〈Dju, ϕ〉L2 ∀ ϕ ∈ C∞c (Ω).

Further, if cK = c, c independent of K, then Dju ∈ L2 (Ω).
Proof:
Take a nested sequence of compact sets Ki ⊂ Ω s.t. Ki ⊂ Kk whenever i ≤ k, that exhaust Ω:

⋃
i>0Ki = Ω.

Observe that L2 (Ki) are Banach spaces so that any sequence of L2-norm bounded functions will have a
subsequence that is convergent in L2 (Ki). Since the Ki are nested we can actually get a sequence ∆hk

j u

which converges in every L2 (Ki). De�ne Dju to be the function that the sequence ∆hk
j u converges to.

Now we have to show that ∆h
j u converges in the weak sense to Dju. De�ne a function N : R→ Z+ by

N (h) = sup {hk | k ∈ Z+, hk ≤ h}

and write 〈
∆h
j u−Dju, ϕ

〉
L2 =

〈
∆h
j u−∆

N(h)
j u+ ∆

N(h)
j u−Dju, ϕ

〉
L2

=
〈

∆h
j u−∆

N(h)
j u, ϕ

〉
+
〈

∆
N(h)
j u−Dju, ϕ

〉
.

The second term clearly goes to 0 b/c ∆
N(h)
j u→ Dju in the L2-norm. We want to show that the �rst term

goes to 0 also as h ↓ 0. We write using fact (d):〈
∆h
j u−∆

N(h)
j u, ϕ

〉
≤ −

〈
u,
(

∆−hj −∆
−N(h)
j

)
ϕ
〉
,

and the right hand side clearly goes to 0 as h ↓ 0, because ϕ is di�erentiable.
Finally, if cK = c independent of K, then the sequence

Ai := lim
k→∞

ˆ
Ki

∣∣∣∆hk
j u
∣∣∣2

will be bounded by c, and since Ki exhaust Ω, ‖Dju‖L2(Ω) ≤ c.

to show that vh is weakly convergent to some v = Dju. Similarly by (9) and our Lemma 7, ∆h
j aαβ and

∆h
j fβ weakly converge to Djaαβ and Djfβ resp. in L2 (BθR (x0)).

So u ∈ Hm+1
loc

(BR (x0)) and we can pass to the limit in (8) to get that Dju satis�es
ˆ

Ω

∑
|α|,|β|≤m

(−1)
|β|
ãαβD

α (Dju)Dβζ =

ˆ
Ω

∑
|β|≤m

(−1)
|β|
FβD

βζ (11)

where
Fβ = Djfβ −

∑
|α|≤m

(Djaαβ)Dαu.

Thus summing over j = 1, . . . , n:

‖u‖m+1,BθR(x0) ≤ C

‖u‖m,BR(x0) +
∑
|β|≤m

‖fβ‖1,BR(x0)


with some new constant C depending on m,n,M, µ, θ,R.
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We can repeat this procedure starting from (10) provided condition B2 holds (Fβ contains terms with
�rst derivatives of aαβ). In fact we can repeat it at most k times as long as Bk holds, each time with possibly
a di�erent value of θ. Since these θ's are completely arbitrary we can produce

‖u‖m+k,BθR(x0) ≤ C

‖u‖m,BR(x0) +
∑
|β|≤m

‖fβ‖k,BR(x0)

 .

Now replace R with θR in the above inequality:

‖u‖m+k,Bθ2R(x0) ≤ C

‖u‖m,BθR(x0) +
∑
|β|≤m

‖fβ‖k,BθR(x0)


and apply Lemma 1 to the term ‖u‖m,BθR(x0) to get

‖u‖m+k,Bθ2R(x0) ≤ C

C ′
‖u‖m−1,BR(x0) +

∑
|β|≤m

‖fβ‖0,BR(x0)

+
∑
|β|≤m

‖fβ‖k,BθR(x0)


and after adjusting the constant C and remembering that θ was arbitrary, we get:

‖u‖m+1,BθR(x0) ≤ C

‖u‖m−1,BR(x0) +
∑
|β|≤m

‖fβ‖k,BR(x0)


which is what we wanted to show.

15


