Bochner Technique:

Most of this heavily references Peter Petersen’s Riemannian Geometry book. [Left to put in: Proof of
Killing’s Equation, Relationship of Lie algebra of Killing fields to Lie algebra of the isometry group of M]|

A vector field X is Killing if the local flows generated by X act by isometries. We will prove the following
theorem:

Theorem 1.5: (Bochner, 1946) Suppose (M, g) is compact, oriented, and has Ric < 0. Then every
Killing field is parallel. Furthermore, if Ric < 0, then there are no nontrivial Killing fields.

The theorem is important because it constrains the isometry group of (M, g). For instance if Ric < 0,
then the isometry group of M is finite.

Now suppose X is a Killing field. Let f = 1|X|* = 1 (X, X). We would like to produce the following
formula which will help us prove the theorem:

Af = —Ric(X,X)+|VX]?. (1)

Some Explanation of the formula:

1.) Here Ric is the Ricci Curvature, which is the metric contraction of the Curvature tensor R in the 1
and 4 places: (if {e;} is an orthonormal basis of T, M)

Ric (VW) =D (R (e;, V) W,ei)

2.) |VX]| is the Euclidean norm of the (1,1)-tensor VX, which we view as a linear endomorphism
VX :TM — TM, given by
(VX) (v) = V, X.

In coordinates VX = 325 X/E; @ o' + X'T¥, - By @ 0.



Brief Review of the Euclidean norm:

Let T be a (1,1)-tensor which we interpret as an endomorphism 7' : TM — TM and is given in coordinates
by _ '

TJZ . Ez ® O'] .
In general the Euclidean norm of 7' is given by

7] = V(T o T7)

where T* : TM — T'M is the adjoint of T' (here interpreted after type change using the metric g). [T* would
be a map from T*M — T*M of the form o
T'ZJ . ('J'Z ® Ej,

but since T}, M is an inner product space w.r.t. g, we can make the identifications
ol gijEj
E; — gjiai
which converts 7™ to a map from TM — TM:
T ging" - By ® 0" ]
So
(ToT)(E) = (7B @0°) ((T/gng" - Eroo*) (E)
= (1B @0) (Tgng" B
= ﬂrngjtgil - B,

which means that o
(ToT*) =TT gj1g" - E. ® o

so that the trace is just

tr(ToT") = T} T/ g;rg".

3.)Af is the Laplacian of f:
div (grad f)

where grad f is the vector field defined such that

(grad f,V) =V (f) = Dv f

for all vector fields V, and div X is the trace of the linear map Y — Vy X. In coordinates this map is given

by
9 , . ,
O (X Erol XY B
and the trace is given by 52 (X?) + Xing.



For the following we need Killing’s equation: If X is a Killing field on M then

(VyX,Z)+ (VzX,Y) =0,

We first define a skew-adjoint (1,1)-tensor by T' (v) = V,X. To be skew-adjoint means that Vv, w € T,M:

(T (v),w) == (v, T (w)) orequiv. (T (v),v)=0

To show Formula (1) we prove the following in sequence:

(1) grad f=Vf=-T(X)=-VxX:

(gradf,V) = V(f)
- %V(X,X)

_ %((VVX,X> +(X, Vv X))

- <VVX7X>
= —(VxX, V).

(2) V2f =V (grad f) = —T? — VxT — Rx (where Rx (V) = R(V,X) X):
Apply V2f to a vector field V:

(V2f) (V) = Vy(-VxX)
= —R(V.X)X - VxVyX — VX

which comes from the definition of the curvature tensor. This equals
= —Rx (V) —VxVy X+ vavX — Vvva
because [V, X] = Vy X — VxV, since V is symmetric. Since ToT (V) =T (VyX) = Vy, x X, this equals

= —RX (V) —TOT(V) — vavX+VVXVX.

Leibnitz Rule for covariant derivatives of tensors:

Because we require that
Vx (T(V)=(VxT)(V)+T(VxV)

we have that

(VxT) (V) =VxVyX —Vy,vX

SO
(V2f) (V) = = (Bx) (V) = (T?) (V) = (VxT) (V)
which shows (2).

(3) We take the trace of V2f = —T? — VxT — Rx, to get
Af = —Ric (X, X) + |T|* = —Ric (X, X) + |VX|*:



This is because of 3 facts:
For skew symmetric (1,1)-tensors (in coordinates T = T]? Ei®o;):
(a) T* = —T. Which implies that tr (~7?) = tr (T o T*) = |T*.

a
(b) tr (T) :=T} = 0.
(¢) The covariant derivative of T' (in the direction of a vector field X) is also skew symmetric.

Proof of (b):

Let T be a (1,1)-tensor that is skew-symmetric w.r.t. the metric g
(T (v),v) =0 Vo,

with components T; written w.r.t. a frame and dual frame {E;} and {c*}. We want to first transform 7" so
that it is w.r.t. an orthonormal basis {El} w.r.t. g. Let A be such a coordinate tranformation matrix

E; = AJE;.
Then the transformed components of T" are given by

Ti = AT (A"

J
In our new frame it is of course still true that for any v
((Tj - E:®57) (v),v) =0.
Let v = E}, for a fixed k. Then o o )
0=((Tj- Ei@5’) (Ex), Ex) = T¢
where the last expression is not meant to be a summation, but just the kth diagonal element of the matrix

Ti. Since all diagonal elements of T} are 0, the trace of (T} - E; ® 67) is >, TF = 0. Now T} is related to
Tj? by a similarity transformation A = tr (T;) = 0 also.

Proof of (c):

That T is skew symmetric means that for any vector field v, (T (v),v) = 0 on M. So for any vector field X:
X (T (v),v) =0.
Then

0=X (T (v),v) =

;o) +(T'(v), Vxv)
,’U> - <U7T (VX’U»

where we used the skew adjointness of T' to get from the 2nd to 3rd line. So VxT is skew symmetric also.

Before we go on we must have the following result which is proved using Stoke’s theorem:



If M is a compact oriented manifold, and dvol is the volume form, then for any smooth function f

/ Afdvol = 0.
M

We want to now use this result and our formula (1) to prove the theorem. We restate it:

Theorem 1.5: Suppose (M, g) is compact, oriented, and has Ric < 0. Then every Killing field is parallel.
Furthermore, if Ric < 0, then there are no nontrivial Killing fields.

Proof: Let X be a Killing Field and define f = |X|?. Since Ric <0

0 = /Afdvol
M
_ /(—Ric(X,X)+\VX|2)dvol
M

/ IVX|? dvol
M
0

Y

v

so [VX| =0, and X is parallel.

If in addition Ric < 0, then for Ric (V, W) to equal 0, either V' or W must be the 0 vector. This means
that Ric (X, X) =0 iff X =0. So X must be a trivial vector field.



Ch. 6, L. Simon’s Lectures in PDE:

We consider PDE’s of the form
Y. D(aapD*uw)= ) D°fs (2)

lal,|B|<m [Bl<m

where fg are prescribed L2 () functions and a,gp are locally bounded functions, ans € LS, ().
u is a weak solution to (1) if when we multiply each side by { € C2° (€2), a test function, and integrate

we get equality:
/ Z (-1 )lﬁ\a 5D%u uDP( = / Z |B| ngﬁﬁ, (3)

Q
lal,|B|<m 18|<m

written out after integration by parts. o
Here we only consider regularity results on a ball B (x¢), where Bg (z¢) C .

(E), an ellipticity condition: There exists a p > 0 s.t.

Y. tas(@AadsZp Y (o)’

o], B]=m |a|=m
for all z € Q, and all collections of real numbers {Aa}), |,
(Br) aap € Wk (Q) and there exists an M > 0 s.t.
|[DYaqp (x)| < M ae. x € Bg(zo), |7 < k.

Our Main Theorem:

Theorem 1: Assume that in (1), fg € H* (). If u € H™ (Bg (20)) is a weak solution of (1), if k >0,
and if (E) and (By) hold, then u € H;"™" (Bg (x0)) and

<C | lul

[l s, By (o) <

)

m—1,Bgr(xo)
|BI<m

for any choice of 6 € (0,1), where C is a constant depending only on n,m,k,0, M, p.

Note: Since the Sobolev embedding theorem can be used to show for ! with m + k > n/2 + [, that
H™Tk (BR (xo)) c ! (Q) and

loc
|U|cl(BR(xo)) < C||u||m+k,BR(:co)v

(this is the harder version of the embedding theorem) [Here C' depends on ?7?7] we can show that under the
conditions of Theorem 1, u € C' (Bg (z0)).

We need to establish a helpful lemma:
Notation for Lemma:

(B) explicit boundedness of aqg:
|aa5 ()| <M, Va€Bgr(zo), |af,[8] <m.

Lemma 1: Ifu € H" () is a weak solution of (1), and if (E) and (B) hold, and if Br (z0) C §, then for
each 6 € (0,1) we have

||uHm,BeR(fﬂo) < C ||u||m71,BR(:co) + Z ||fﬁHk,BR($O) ’
[B|<m

where C' depends only on R, M, u,m,n, 6.



To prove Lemma 1 we need another lemma (also Lemma 1, but from section 5 of Simon’s PDE’s).

Pre-Lemma 1: If u € W0." (Q) amd if || < m, then D*u, — D%u pointwise a.e. in €, and also
locally w.r.t. the || - ||, p, norm in €.

(Here u, is a mollification of u with respect to a sequence of mollifiers p,.)

Proof of Lemma 1:

We have to first show that if u is a weak solution to (1) then (2) will also be satisfied when ¢ = ph
with ¢ € C° () and h € H[7, (). This is true because gh, € C° () for sufficiently small o and, by the
pre-lemma, lim,_,o ph, = ch w.r.t. the H™ (Q) norm: It will be true that

/ Z (-1 )\B\a 5Do‘uD’8 (¢he) / Z \ﬁl ng’ﬁ (ho)
2 |al,[5|<m |BI<m

by definition of weak solution, and since
1/2

> /\Dﬁ ©hy) Dﬁ(gph)| -0 as 0—0
|BI<m

we get

/ > (=) ansDuD? (gh) = / S (1) 5D (oh).

lef,18]<m [Bl<m
Now make the careful choice h = u, and we get
B e 5 B 5
[ SRCEEENGET I STl B D NGNSt
lal,|B]<m y+6= 5 [B]<m y+6= [3
We now impose (E) and (B) to get (3/4):

/ > Dl < m / S {18l S (107l [DPy)) (4)

lee|= [Bl<m Y+6=p

—HWm!/Q Z | D% Z (\D7u|‘D5<p|) (5)

lal<m |6]<m, 7| <m—1



Details:
Set D%u = A\, in (E), and multiply both sides by ¢ (which is positive) gives

u/z (D) ¢</ > (D) (D).

lel= ], | Bl=

Now adding and subtracting some equal terms gives

/ Zaaﬁpu(Dﬂ / Zaaﬁpa (DPu) ¢

lal,18]= lal,|B]=
18] o Bl v D
Z (=) apgDu Z WD uD’p
al, 8= y+6=8,|8|>1
a 5
+ /Q DR [CEILRO. R 1D Dl DDy
la|<m or |B|<m Y+o= B
18] B! s
1) aqgDu —D7uD’p
o 15!
al, 8= y+6=3,|8|>1

—/ > ()" agsDu | > ,5(!;!D7UD5<P)

Qal<mor |Bl<m y4+6=05

/ Z (—1)‘5‘ aagD%u Z '5!D7uD5

lal,|B]<m vro= )

SRR S (RIEPR (5 S e

lal,18]= y+6=8,|8|>1
_/ 3 () asDu | 3 —Dqu%
Q\oz|<m or |Bl<m ~46= 5 !
IB\ )
/ S0 > (WDMD )
[B|<m y+6=0

— the two negative terms in the previous line.

Taking absolute values and distributing across integrals and summations gives (3)

Let 8 € (0,1), and choose ¢ to be a cutoff function with for the balls Byg (x¢) and Bg (x¢) in the usual
sense:
pelCX(Q),0< <1, ¢ =0outside of Bpg (z0)
p=1on Byg(z), sup|D’¢| < C((1—0)R)™"!

for any multi-index § with |§| < m [Our proof doesn’t depend on the case where |§| > m|. Also C can be
made to only depend on J.
With such a ¢ we have that

sup ‘D‘scp2m| <C((1-9) R)fw @™, for any ¢ with [6] < m. (6)



Details (by induction):
This comes down to an appropriate use of the chain rule for weak derivatives:

sup ’D‘S<p2’ < sup |2<pD6<p‘ .

So
D D Ca R O
a+B=4§
SO
sup | DA H| < ST e -0 Ry e 200 (1= 0) R)
a+pB=4§
< C(A-0R) g

for some new constant C'’.

Now (3) will also hold for the C2° (Q) function ¢’ = ©?™. If we substitute then ©?™ in place of ¢ in
(3/4), and use (5) twice we get:

/ Z ‘Dau| me
B

R(20) |4|=m

new LHS

SN D ST SRl
Br(zo) 1B|<m ~+6=4
! [ > 1Dl > (DD
Brlo) \jaf<m |8]<m, [y|<m—1
< mi [ Sl | | X Isle™ - sw {C (-0 )T
Br(@o) \ jaj<m 181<m 18<m
+Mm!/ S| [ X (0™ - sw {C(1 -0 R
Br(@o) \ jaj<m Iyl<m—1 18l<em
< C Do IDule™ | {0 Y Dl + Y (fl
Br(zo) la|<m [v[<m-—1 [B|<m

for some new constant C' which depends on M, u, 0, R, m,n.

Rewrite the last line as

¢ Y [Dule™ Yo Dl + Y ISl (7)

Br(zo0)

la]=m [v[<m—1 [Bl<m
+C S ol | Y o+ Y 1l ®)
Br(zo) \ |aj<m—1 ly|<m—1 181<m

Term (6) is the same as

c / S prulem Dl | +C / S Drulem I
Br(xo) Br(zo)

la|=m,|y|<m—1 la|=m,|B|<m



Now use Cauchy’s inequality ab < ea?/2 + b?/(2¢) on these terms, to show that they are less than

QCKE/ Z D ™ 4 —— S w4 > It
B

R(20) |o|= Br(®o) \ |y|<m—1 1B]<m

where K = number of multi-indices < m. Do the same for term (7) to get that it is <:

CK
ke[S P G > Dl 3 1P
R

(70) Ja] <m—1 Br@o) \ |yj<m—1 18I<m

Use this to write

/ Z |Du)? o> < 2C’K5/ > D 2m+— oD+ > fal?
Q

la|= Br(zo) |a|=m Br(zo) [y[€m—1 |81<m
a, 12 2m CK v, .12 2
+2CKe YDy + 5 S oD+ > (sl
Br(@o) \|a|<m-1 Brlwo) \ |y j<m—1 18] <m

We can pull over the 1st and 3rd term on the RHS to the other side, and add in to both sides

+/ Z |D‘Xu|2302m
Br(o)

lal<m—1

to get

K
(1—2CKe) /Q > Dol o < <C+1)/B( ) oD+ > fsl?
RrR(Zo

|| <m [v|<m—1 1Bl<m

— (with appropriate choice of ¢)

/ S peuf gtm < O / Sl S 1P

la]<m Br(@o) \ |y|<m—1 18]<m

for some new constant C’ depending on M, u, 0, R, m,n. This implies Lemma 1.

For the proof of the Theorem we need some results about difference quotients:
If f is a real valued function defined on a domain 2 C R", a difference quotient in the j-th direction is

[z +hej) = f ()
h
defined on a domain €2;. We need the following 6 facts (for h # 0):

A;Lf =

(a) A" (f + g) = Al + Alg on By, (o) (Obvious)

(b) A? (fg) = gA;‘f + fA?g for f,g € L' (Bgr (z0)), and where f(:n) = f(x + hej):

%(f(x-‘,-hej)g(l‘-i-hej)_f(x)g(w))

= (e g (ot hey) — [ (a+hey) g (@) + f o+ hej) g (2) — f ()9 (2)
= gA'f+ fAl

A" (fg)

10



(c) D*Alf = A'D*f on Br_y (20) and for f € H™ (Bg (z0)) and |a| < m: This follows from
distributivity of the weak derivative.

(d) Integration by parts formula:

/ fA;-Lgda:: —/ gA;hfdx
BR(Zto) BR(IO)

whenver f,g € L' (Bg (7)) and fg vanishes outside of Bpr_p) (x0). By straight forward calculation:

1 1
[ oabgde=3 [ j@eerhey-1 [ f@g@
Br(zo) Br(zo) Br(zo)

and

[ et - _[(_1}1) [ o@rarne) - (5) [ R(zo)g(fv)f(x)]

Wy e g [ @)

which are the same after change of variables y = x + he;.

(e) Our condition (By) implies:
‘A?D”aag ()| <M ae zeQy, |y <k-1

(f) If v € H' (Bg (7)) then
”A;'LUHlfLBR_W(mO) < ||U||l,BR(wo)

Details of (e):
Because |y| < k there exists one more weak derivative and we can write

1 h
A? (D’yaalg) = E/(; l)jl)’y (l‘ —|— tej) dt

Suppose (for purposes of getting a contradiction) that
sup |D;D7aqp| < A? (D7aqg) .

Then

1 h
Al (DVagg) = E/o D;D7 (z + te;) dt

= D;(D%aap)
< A?(DWGQB)

which is a contradiction.

11



Details of (f):
We show that [[Avllo 5, (ze) < I1D50ll0, B (z0)Where v € H' (Bg (x0)). This will show (f) by applying it
to each term in the H'~! norm:

hej) — I
|ALy| = V(@ hes) —v (@) < —/ |Djv (z1,...,2; +7,...2,)|dT
J h h /o
. N 1/2
< E.hl/z (/ |Djv(x1,...,mj+T,...xn)|2d7>
0
=
2 1 h 2
|A§Lv| < 7 |Djv (x1,...,x;+7,...2,)|" dr
0
=
ho 12 1 h 2
|Ajv| < - |Djv|” drdx
Br_|n|(z0) h Br_jn|(z0) JO
<

1 [ 2
7/ / |D;v|” dedr
h Jo Br_|n(zo0)
1 rh
= [ 1Dl e
0

= [1Djvll0,Bx_ (o) < D500, B (20)

Proof of Theorem 1:

(Case k =1)

Choose h > 0 s.t. Bg (x0) C Q. If ¢ € C° () then A;hC € C2° (€p,)) and we can use it as our test
function in (2):

/ > (1) aasD*uD? (A7) = /Z )" 1507 (A77¢)
2 al|gl<m 2 181<m

using fact (c)

/ Z (-1 )lﬁlaBDo‘uA DﬁC /QZ \Blfﬂ (Dﬁc)

@ a8 <m |Bl<m

using fact (d)
Q|a|,|ﬁ|3m |m<m
using fact (b) and (c)
*/Q ST (DAY (aap) DU+ GapD™ (Alu)) D¢ = / ST ()T Al (£5) D¢
lal,|B|<m |Bl<m
with some variable rebranding:
/ S (1) ansDo0,DP¢ = / S ()T Es D% (9)
lal,|B|<m |BI<m

where aqp () = aap (z + hej), vy = A;‘u and

F57h = A? (fﬁ) — Z (A;—Laag) D*u.

o] <m

12



Ah! Now we can use our helpful lemma (Lemma 1) on (8) [Gqg still satisfies the ellipticity condition (E)
and boundedness (B) because it is just aqg at a different point in .] For any 6 € (0,1)

[0nllm. Bon(ao) < C | 10nllm—1.Br@e) + D Fsnllo,Ba(0) | »
[B]<m

where C' does not depend on h. Because of (e) and (f) [and remembering that we made some extra assump-
tions on fj in the statement of the theorem: f3 € H* (Q)] we have that

5,0 )\A?aaﬂ\ <M and A fsllo.Br i@o) < If8ll1Br(o) (10)
R—|n|(Zo

which we use to rewrite an upper estimate of ||Fp p,

l0,Br(z0) DY applying Cauchy’s inequality:
1Es.mll0,Br(o) < I1f8l11,Br(ao) + KM |[ttllm, B (x0)-
This implies for some new constant C' independent of h
thHm,BeR(IO) <C ||u||m,BR(a:0) + Z Hfﬁ”LBR(Io)
1Bl<m

So we get that
lim sup ||Uh||m,BeR(f00)
hi0

exists and is less than some constant which depends on #, and some other stuff. We now apply:

13



Lemma 7 (Ch. 5):
IfU € Lloc( )7 and Zf
lin}}fup ||A;-’u||L2(K) < ¢k (< 00)
0

for each compact K C Q. Then u has a weak derivative Dju € L2 (2), and A?u — Dju in the weak sense
(Afu, ), = (Dju,0) . Vo € CE(Q).

Further, if cx = ¢, ¢ independent of K, then Dju € L* ().

Proof:

Take a nested sequence of compact sets K; C Qs.t. K; C K} whenever i < k, that exhaust Q: [J,., K; = Q.
Observe that L2 (K;) are Banach spaces so that any sequence of L?-norm bounded functions will have a
subsequence that is convergent in L? (K;). Since the K; are nested we can actually get a sequence A?’“u
which converges in every L? (K;). Define Dju to be the function that the sequence A?’“u converges to.
Now we have to show that Au converges in the weak sense to Dju. Define a function N : R — Z by

N (h) =sup{hy |k € Z4+, hi, < h}
and write

N(h N(h
<A?u — Dju, <p>L2 = <Aj’u —A; My 4 A; My — Dju, <p>L2

<A§Lu — A;V(h)w <p> + <A;-V(h)u — Dju, go> .

The second term clearly goes to 0 b/c AN(h)u — Dju in the L:-norm. We want to show that the first term

goes to 0 also as h | 0. We write using fact (d):
N(h _ —N(h)
<A?U—Aj()u,<p> < —<u,(Ajh—Aj ( )<p>,

and the right hand side clearly goes to 0 as h | 0, because ¢ is differentiable.
Finally, if cx = c independent of K, then the sequence

k—oo J

b |2
A; = lim ‘Aj’“u‘
i

will be bounded by ¢, and since K; exhaust Q, || Djull2q) < ¢

to show that vy, is weakly convergent to some v = D;u. Similarly by (9) and our Lemma 7, A;-Laag and
Al fz weakly converge to Djasp and D fg resp. in L? (Byg (x0)).

So u € H{" (Bg (0)) and we can pass to the limit in (8) to get that D;u satisfies
/ S () aasD™ (Dju) D¢ = / S (-1 FsDP¢ (11)
“ lal.18|<m |Bl<m

where
Fs=Djfs — Z (Djanp) D*u.

la]<m

Thus summing over j =1,...,n:

||u||m+1,BeR(Io) <C Hu”man(on) + Z ||fﬂ||1’BR($O)
[B|<m

with some new constant C' depending on m,n, M, u, 0, R.
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We can repeat this procedure starting from (10) provided condition Bs holds (Fj contains terms with
first derivatives of a, ). In fact we can repeat it at most & times as long as By, holds, each time with possibly
a different value of #. Since these €’s are completely arbitrary we can produce

wllmsk, Bor(zo) < C | tllm,Br(zo) + Z | f8l%, BR (zo)
[B]<m

Now replace R with AR in the above inequality:

[ullik, Byz yw0) < C | Ntllim,Boreo) + D N1£5]
[B]<m

k,Bor(z0)

and apply Lemma 1 to the term [[ul[,, By (20) to get

||u||m+k,Bg2R(£L’0) <C c’ ||uHm*1,BR(Io)+ Z HfBHO,BR(Io) + Z Hfﬁ”’C»BGR(JL’O)
[B|<m [BI<m

and after adjusting the constant C' and remembering that 6 was arbitrary, we get:

[ullm+1,Bor(eo) < C | Ntllm—1,Br@e) + D 1£5lk.Br(e0)
[BI<m

which is what we wanted to show.
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