Bochner Technique:

Most of this heavily references Peter Petersen's Riemannian Geometry book. [Left to put in: Proof of Killing's Equation, Relationship of Lie algebra of Killing fields to Lie algebra of the isometry group of M]

A vector field X is Killing if the local flows generated by X act by isometries. We will prove the following theorem:

Theorem 1.5: (Bochner, 1946) Suppose (M, g) is compact, oriented, and has Ric ≤ 0. Then every Killing field is parallel. Furthermore, if Ric <0, then there are no nontrivial Killing fields.

The theorem is important because it constrains the isometry group of (M, g). For instance if Ric <0, then the isometry group of M is finite.

Now suppose X is a Killing field. Let $f=\frac{1}{2}|X|^{2}=\frac{1}{2}\langle X, X\rangle$. We would like to produce the following formula which will help us prove the theorem:

$$
\begin{equation*}
\Delta f=-\operatorname{Ric}(X, X)+|\nabla X|^{2} \tag{1}
\end{equation*}
$$

Some Explanation of the formula:

1.) Here Ric is the Ricci Curvature, which is the metric contraction of the Curvature tensor R in the 1 and 4 places: (if $\left\{e_{i}\right\}$ is an orthonormal basis of $T_{p} M$)

$$
\operatorname{Ric}(V, W)=\sum_{i}\left\langle R\left(e_{i}, V\right) W, e_{i}\right\rangle
$$

2.) $|\nabla X|$ is the Euclidean norm of the (1,1)-tensor ∇X, which we view as a linear endomorphism $\nabla X: T M \rightarrow T M$, given by

$$
(\nabla X)(v)=\nabla_{v} X
$$

In coordinates $\nabla X=\frac{\partial}{\partial x^{i}} X^{j} E_{j} \otimes \sigma^{i}+X^{j} \Gamma_{i j}^{k} \cdot E_{k} \otimes \sigma^{i}$.

Brief Review of the Euclidean norm:

Let T be a $(1,1)$-tensor which we interpret as andomorphism $T: T M \rightarrow T M$ and is given in coordinates by

$$
T_{j}^{i} \cdot E_{i} \otimes \sigma^{j}
$$

In general the Euclidean norm of T is given by

$$
|T|=\sqrt{\operatorname{tr}\left(T \circ T^{*}\right)}
$$

where $T^{*}: T M \rightarrow T M$ is the adjoint of T (here interpreted after type change using the metric g). [T^{*} would be a map from $T^{*} M \rightarrow T^{*} M$ of the form

$$
T_{i}^{j} \cdot \sigma^{i} \otimes E_{j}
$$

but since $T_{p} M$ is an inner product space w.r.t. g, we can make the identifications

$$
\begin{array}{r}
\sigma^{i} \mapsto g^{i j} E_{j} \\
E_{j} \mapsto g_{j i} \sigma^{i}
\end{array}
$$

which converts T^{*} to a map from $T M \rightarrow T M$:

$$
\left.T_{i}^{j} g_{j k} g^{i l} \cdot E_{l} \otimes \sigma^{k} .\right]
$$

So

$$
\begin{aligned}
\left(T \circ T^{*}\right)\left(E_{t}\right) & =\left(T_{s}^{r} \cdot E_{r} \otimes \sigma^{s}\right)\left(\left(T_{i}^{j} g_{j k} g^{i l} \cdot E_{l} \otimes \sigma^{k}\right)\left(E_{t}\right)\right) \\
& =\left(T_{s}^{r} \cdot E_{r} \otimes \sigma^{s}\right)\left(T_{i}^{j} g_{j t} g^{i l} \cdot E_{l}\right) \\
& =T_{l}^{r} T_{i}^{j} g_{j t} g^{i l} \cdot E_{r}
\end{aligned}
$$

which means that

$$
\left(T \circ T^{*}\right)=T_{l}^{r} T_{i}^{j} g_{j t} g^{i l} \cdot E_{r} \otimes \sigma^{t}
$$

so that the trace is just

$$
\operatorname{tr}\left(T \circ T^{*}\right)=T_{l}^{r} T_{i}^{j} g_{j r} g^{i l}
$$

3.) Δf is the Laplacian of f :

$$
\operatorname{div}(\operatorname{grad} f)
$$

where $\operatorname{grad} f$ is the vector field defined such that

$$
\langle\operatorname{grad} f, V\rangle=V(f)=D_{V} f
$$

for all vector fields V, and div X is the trace of the linear map $Y \mapsto \nabla_{Y} X$. In coordinates this map is given by

$$
\frac{\partial}{\partial x^{j}}\left(X^{i}\right) E_{i} \otimes \sigma^{j}+X^{i} \Gamma_{j i}^{k} \cdot E_{k} \otimes \sigma^{j}
$$

and the trace is given by $\frac{\partial}{\partial x^{i}}\left(X^{i}\right)+X^{i} \Gamma_{j i}^{j}$.

For the following we need Killing's equation: If X is a Killing field on M then

$$
\left\langle\nabla_{Y} X, Z\right\rangle+\left\langle\nabla_{Z} X, Y\right\rangle=0
$$

We first define a skew-adjoint (1,1)-tensor by $T(v)=\nabla_{v} X$. To be skew-adjoint means that $\forall v, w \in T_{p} M$:

$$
\langle T(v), w\rangle=-\langle v, T(w)\rangle \quad \text { or equiv. } \quad\langle T(v), v\rangle=0
$$

To show Formula (1) we prove the following in sequence:
(1) grad $f=\nabla f=-T(X)=-\nabla_{X} X$:

$$
\begin{aligned}
\langle\operatorname{grad} f, V\rangle & =V(f) \\
& =\frac{1}{2} V\langle X, X\rangle \\
& =\frac{1}{2}\left(\left\langle\nabla_{V} X, X\right\rangle+\left\langle X, \nabla_{V} X\right\rangle\right) \\
& =\left\langle\nabla_{V} X, X\right\rangle \\
& =-\left\langle\nabla_{X} X, V\right\rangle
\end{aligned}
$$

(2) $\nabla^{2} f=\nabla(\operatorname{grad} f)=-T^{2}-\nabla_{X} T-R_{X}\left(\right.$ where $\left.R_{X}(V)=R(V, X) X\right)$:

Apply $\nabla^{2} f$ to a vector field V :

$$
\begin{aligned}
\left(\nabla^{2} f\right)(V) & =\nabla_{V}\left(-\nabla_{X} X\right) \\
& =-R(V, X) X-\nabla_{X} \nabla_{V} X-\nabla_{[V, X]} X
\end{aligned}
$$

which comes from the definition of the curvature tensor. This equals

$$
=-R_{X}(V)-\nabla_{X} \nabla_{V} X+\nabla_{\nabla_{X} V} X-\nabla_{\nabla_{V} X} X
$$

because $[V, X]=\nabla_{V} X-\nabla_{X} V$, since ∇ is symmetric. Since $T \circ T(V)=T\left(\nabla_{V} X\right)=\nabla_{\nabla_{V}} X$, this equals

$$
=-R_{X}(V)-T \circ T(V)-\nabla_{X} \nabla_{V} X+\nabla_{\nabla_{X} V} X
$$

Leibnitz Rule for covariant derivatives of tensors:

Because we require that

$$
\nabla_{X}(T(V))=\left(\nabla_{X} T\right)(V)+T\left(\nabla_{X} V\right)
$$

we have that

$$
\left(\nabla_{X} T\right)(V)=\nabla_{X} \nabla_{V} X-\nabla_{\nabla_{X} V} X
$$

so

$$
\left(\nabla^{2} f\right)(V)=-\left(R_{X}\right)(V)-\left(T^{2}\right)(V)-\left(\nabla_{X} T\right)(V)
$$

which shows (2).
(3) We take the trace of $\nabla^{2} f=-T^{2}-\nabla_{X} T-R_{X}$, to get $\Delta f=-\operatorname{Ric}(X, X)+|T|^{2}=-\operatorname{Ric}(X, X)+|\nabla X|^{2}$:

This is because of 3 facts:
For skew symmetric (1,1)-tensors (in coordinates $T=T_{j}^{i} \cdot E_{i} \otimes \sigma_{j}$):
(a) $T^{*}=-T$. Which implies that $\operatorname{tr}\left(-T^{2}\right)=\operatorname{tr}\left(T \circ T^{*}\right)=|T|^{2}$.
(b) $\operatorname{tr}(T):=T_{i}^{i}=0$.
(c) The covariant derivative of T (in the direction of a vector field X) is also skew symmetric.

Proof of (b):

Let T be a $(1,1)$-tensor that is skew-symmetric w.r.t. the metric g

$$
\langle T(v), v\rangle=0 \quad \forall v,
$$

with components T_{j}^{i} written w.r.t. a frame and dual frame $\left\{E_{i}\right\}$ and $\left\{\sigma^{i}\right\}$. We want to first transform T so that it is w.r.t. an orthonormal basis $\left\{\bar{E}_{i}\right\}$ w.r.t. g. Let A be such a coordinate tranformation matrix

$$
\bar{E}_{i}=A_{i}^{j} E_{j} .
$$

Then the transformed components of T are given by

$$
\bar{T}_{j}^{i}=A_{l}^{i} T_{k}^{l}\left(A^{-1}\right)_{j}^{k}
$$

In our new frame it is of course still true that for any v

$$
\left\langle\left(\bar{T}_{j}^{i} \cdot \bar{E}_{i} \otimes \bar{\sigma}^{j}\right)(v), v\right\rangle=0
$$

Let $v=\bar{E}_{k}$ for a fixed k. Then

$$
0=\left\langle\left(\bar{T}_{j}^{i} \cdot \bar{E}_{i} \otimes \bar{\sigma}^{j}\right)\left(\bar{E}_{k}\right), \bar{E}_{k}\right\rangle=\bar{T}_{k}^{k}
$$

where the last expression is not meant to be a summation, but just the k th diagonal element of the matrix \bar{T}_{j}^{i}. Since all diagonal elements of \bar{T}_{j}^{i} are 0 , the trace of $\left(\bar{T}_{j}^{i} \cdot \bar{E}_{i} \otimes \bar{\sigma}^{j}\right)$ is $\sum_{k} \bar{T}_{k}^{k}=0$. Now \bar{T}_{j}^{i} is related to T_{j}^{i} by a similarity transformation $A \Longrightarrow \operatorname{tr}\left(T_{j}^{i}\right)=0$ also.

Proof of (c):

That T is skew symmetric means that for any vector field $v,\langle T(v), v\rangle \equiv 0$ on M. So for any vector field X :

$$
X\langle T(v), v\rangle=0
$$

Then

$$
\begin{aligned}
0=X\langle T(v), v\rangle & =\left\langle\nabla_{X}(T(v)), v\right\rangle+\left\langle T(v), \nabla_{X} v\right\rangle \\
& =\left\langle\left(\nabla_{X} T\right)(v)+T\left(\nabla_{X} v\right), v\right\rangle+\left\langle T(v), \nabla_{X} v\right\rangle \\
& =\left\langle\left(\nabla_{X} T\right)(v)+T\left(\nabla_{X} v\right), v\right\rangle-\left\langle v, T\left(\nabla_{X} v\right)\right\rangle \\
& =\left\langle\left(\nabla_{X} T\right)(v), v\right\rangle
\end{aligned}
$$

where we used the skew adjointness of T to get from the 2 nd to 3 rd line. So $\nabla_{X} T$ is skew symmetric also.

Before we go on we must have the following result which is proved using Stoke's theorem:

If M is a compact oriented manifold, and $d \mathrm{vol}$ is the volume form, then for any smooth function f

$$
\int_{M} \Delta f d \mathrm{vol}=0
$$

We want to now use this result and our formula (1) to prove the theorem. We restate it:

Theorem 1.5: Suppose (M, g) is compact, oriented, and has Ric ≤ 0. Then every Killing field is parallel. Furthermore, if Ric <0, then there are no nontrivial Killing fields.

Proof: Let X be a Killing Field and define $f=\frac{1}{2}|X|^{2}$. Since Ric ≤ 0

$$
\begin{aligned}
0 & =\int_{M} \Delta f d \mathrm{vol} \\
& =\int_{M}\left(-\operatorname{Ric}(X, X)+|\nabla X|^{2}\right) d \mathrm{vol} \\
& \geq \int_{M}|\nabla X|^{2} d \mathrm{vol} \\
& \geq 0
\end{aligned}
$$

so $|\nabla X| \equiv 0$, and X is parallel.
If in addition Ric <0, then for $\operatorname{Ric}(V, W)$ to equal 0 , either V or W must be the 0 vector. This means that $\operatorname{Ric}(X, X) \equiv 0$ iff $X \equiv 0$. So X must be a trivial vector field.

Ch. 6, L. Simon's Lectures in PDE:

We consider PDE's of the form

$$
\begin{equation*}
\sum_{|\alpha|,|\beta| \leq m} D^{\beta}\left(a_{\alpha \beta} D^{\alpha} u\right)=\sum_{|\beta| \leq m} D^{\beta} f_{\beta} \tag{2}
\end{equation*}
$$

where f_{β} are prescribed $L_{\mathrm{loc}}^{2}(\Omega)$ functions and $a_{\alpha \beta}$ are locally bounded functions, $a_{\alpha \beta} \in L_{\mathrm{loc}}^{\infty}(\Omega)$.
u is a weak solution to (1) if when we multiply each side by $\zeta \in C_{c}^{\infty}(\Omega)$, a test function, and integrate we get equality:

$$
\begin{equation*}
\int_{\Omega} \sum_{|\alpha|,|\beta| \leq m}(-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u D^{\beta} \zeta=\int_{\Omega} \sum_{|\beta| \leq m}(-1)^{|\beta|} f_{\beta} D^{\beta} \zeta \tag{3}
\end{equation*}
$$

written out after integration by parts.
Here we only consider regularity results on a ball $B_{R}\left(x_{0}\right)$, where $\overline{B_{R}}\left(x_{0}\right) \subset \Omega$.
(E), an ellipticity condition: There exists a $\mu>0$ s.t.

$$
\sum_{|\alpha|,|\beta|=m} a_{\alpha \beta}(x) \lambda_{\alpha} \lambda_{\beta} \geq \mu \sum_{|\alpha|=m}\left(\lambda_{\alpha}\right)^{2}
$$

for all $x \in \Omega$, and all collections of real numbers $\left\{\lambda_{\alpha}\right\}_{|\alpha|=m}$.
$\left(B_{k}\right) a_{\alpha \beta} \in W^{k, \infty}(\Omega)$ and there exists an $M>0$ s.t.

$$
\left|D^{\gamma} a_{\alpha \beta}(x)\right| \leq M \text { a.e. } x \in B_{R}\left(x_{0}\right),|\gamma| \leq k
$$

Our Main Theorem:
Theorem 1: Assume that in (1), $f_{\beta} \in H^{k}(\Omega)$. If $u \in H^{m}\left(B_{R}\left(x_{0}\right)\right)$ is a weak solution of (1), if $k \geq 0$, and if (E) and $\left(B_{k}\right)$ hold, then $u \in H_{l o c}^{m+k}\left(B_{R}\left(x_{0}\right)\right)$ and

$$
\|u\|_{m+k, B_{\theta R}\left(x_{0}\right)} \leq C\left(\|u\|_{m-1, B_{R}\left(x_{0}\right)}+\sum_{|\beta| \leq m}\left\|f_{\beta}\right\|_{k, B_{R}\left(x_{0}\right)}\right)
$$

for any choice of $\theta \in(0,1)$, where C is a constant depending only on n, m, k, θ, M, μ.

Note: Since the Sobolev embedding theorem can be used to show for l with $m+k>n / 2+l$, that $H_{\mathrm{loc}}^{m+k}\left(B_{R}\left(x_{0}\right)\right) \subset C^{l}(\Omega)$ and

$$
|u|_{C^{l}\left(B_{R}\left(x_{0}\right)\right)} \leq C\|u\|_{m+k, B_{R}\left(x_{0}\right)},
$$

(this is the harder version of the embedding theorem) [Here C depends on ???] we can show that under the conditions of Theorem $1, u \in C^{l}\left(B_{R}\left(x_{0}\right)\right)$.

We need to establish a helpful lemma:
Notation for Lemma:
(B) explicit boundedness of $a_{\alpha \beta}$:

$$
\left|a_{\alpha \beta}(x)\right| \leq M, \quad \forall x \in B_{R}\left(x_{0}\right),|\alpha|,|\beta| \leq m
$$

Lemma 1: If $u \in H_{l o c}^{m}(\Omega)$ is a weak solution of (1), and if (E) and (B) hold, and if $\overline{B_{R}}\left(x_{0}\right) \subset \Omega$, then for each $\theta \in(0,1)$ we have

$$
\|u\|_{m, B_{\theta R}\left(x_{0}\right)} \leq C\left(\|u\|_{m-1, B_{R}\left(x_{0}\right)}+\sum_{|\beta| \leq m}\left\|f_{\beta}\right\|_{k, B_{R}\left(x_{0}\right)}\right)
$$

where C depends only on R, M, μ, m, n, θ.

To prove Lemma 1 we need another lemma (also Lemma 1, but from section 5 of Simon's PDE's).
Pre-Lemma 1: If $u \in W_{\text {loc }}^{m, p}(\Omega)$ amd if $|\alpha| \leq m$, then $D^{\alpha} u_{\sigma} \rightarrow D^{\alpha} u$ pointwise a.e. in Ω, and also locally w.r.t. the $\|\cdot\|_{m, p}$ norm in Ω.
(Here u_{σ} is a mollification of u with respect to a sequence of mollifiers ρ_{σ}.)

Proof of Lemma 1:

We have to first show that if u is a weak solution to (1) then (2) will also be satisfied when $\zeta=\varphi h$ with $\varphi \in C_{c}^{\infty}(\Omega)$ and $h \in H_{\mathrm{loc}}^{m}(\Omega)$. This is true because $\varphi h_{\sigma} \in C_{c}^{\infty}(\Omega)$ for sufficiently small σ and, by the pre-lemma, $\lim _{\sigma \rightarrow 0} \varphi h_{\sigma}=\sigma h$ w.r.t. the $H^{m}(\Omega)$ norm: It will be true that

$$
\int_{\Omega} \sum_{|\alpha|,|\beta| \leq m}(-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u D^{\beta}\left(\varphi h_{\sigma}\right)=\int_{\Omega} \sum_{|\beta| \leq m}(-1)^{|\beta|} f_{\beta} D^{\beta}\left(\varphi h_{\sigma}\right)
$$

by definition of weak solution, and since

$$
\left(\sum_{|\beta| \leq m} \int\left|D^{\beta}\left(\varphi h_{\sigma}\right)-D^{\beta}(\varphi h)\right|^{2}\right)^{1 / 2} \rightarrow 0 \quad \text { as } \sigma \rightarrow 0
$$

we get

$$
\int_{\Omega} \sum_{|\alpha|,|\beta| \leq m}(-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u D^{\beta}(\varphi h)=\int_{\Omega} \sum_{|\beta| \leq m}(-1)^{|\beta|} f_{\beta} D^{\beta}(\varphi h)
$$

Now make the careful choice $h=u$, and we get

$$
\int_{\Omega} \sum_{|\alpha|,|\beta| \leq m}(-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u\left(\sum_{\gamma+\delta=\beta} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi\right)=\int_{\Omega} \sum_{|\beta| \leq m}(-1)^{|\beta|} f_{\beta}\left(\sum_{\gamma+\delta=\beta} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi\right)
$$

We now impose (E) and (B) to get (3/4):

$$
\begin{align*}
\int_{\Omega} \sum_{|\alpha|=m}\left|D^{\alpha} u\right|^{2} \varphi \leq & m!\int_{\Omega} \sum_{|\beta| \leq m}\left(\left|f_{\beta}\right| \sum_{\gamma+\delta=\beta}\left(\left|D^{\gamma} u\right|\left|D^{\delta} \varphi\right|\right)\right) \tag{4}\\
& +M m!\int_{\Omega}\left(\sum_{|\alpha| \leq m}\left|D^{\alpha} u\right|\right)\left(\sum_{|\delta| \leq m,|\gamma| \leq m-1}\left(\left|D^{\gamma} u\right|\left|D^{\delta} \varphi\right|\right)\right) \tag{5}
\end{align*}
$$

Details:

Set $D^{\alpha} u=\lambda_{\alpha}$ in (E), and multiply both sides by φ (which is positive) gives

$$
\mu \int_{\Omega} \sum_{|\alpha|=m}\left(D^{\alpha} u\right)^{2} \varphi \leq \int_{\Omega} \sum_{|\alpha|,|\beta|=m} a_{\alpha \beta}\left(D^{\alpha} u\right)\left(D^{\beta} u\right) \varphi
$$

Now adding and subtracting some equal terms gives

$$
\begin{aligned}
\int_{\Omega} \sum_{|\alpha|,|\beta|=m} a_{\alpha \beta}\left(D^{\alpha} u\right)\left(D^{\beta} u\right) \varphi= & \int_{\Omega} \sum_{|\alpha|,|\beta|=m} a_{\alpha \beta}\left(D^{\alpha} u\right)\left(D^{\beta} u\right) \varphi \\
& +\int_{\Omega} \sum_{|\alpha|,|\beta|=m}\left((-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u\left(\sum_{\gamma+\delta=\beta,|\delta| \geq 1} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi\right)\right) \\
& +\int_{\Omega} \sum_{|\alpha|<m \text { or }|\beta|<m}\left((-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u\left(\sum_{\gamma+\delta=\beta} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi\right)\right) \\
& -\int_{\Omega} \sum_{|\alpha|,|\beta|=m}\left((-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u\left(\sum_{\gamma+\delta=\beta,|\delta| \geq 1} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi\right)\right) \\
& -\int_{\Omega} \sum_{|\alpha|<m \text { or }|\beta|<m}\left((-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u\left(\sum_{\gamma+\delta=\beta} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi\right)\right) \\
= & \int_{\Omega} \sum_{|\alpha|,|\beta| \leq m}\left((-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u\left(\sum_{\gamma+\delta=\beta} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi\right)\right) \\
& -\int_{\Omega} \sum_{|\alpha|,|\beta|=m}\left((-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u\left(\sum_{\gamma+\delta=\beta,|\delta| \geq 1} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi\right)\right) \\
& -\int_{\Omega} \sum_{|\alpha|<m \text { or }|\beta|<m}\left((-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u\left(\sum_{\gamma+\delta=\beta} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi\right)\right) \\
= & \sum_{\Omega} \sum_{|\beta| \leq m}\left((-1)^{|\beta|} \sum_{f_{\beta}} \sum_{\gamma+\delta=\beta}\left(\frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi\right)\right)
\end{aligned}
$$

- the two negative terms in the previous line.

Taking absolute values and distributing across integrals and summations gives (3)

Let $\theta \in(0,1)$, and choose φ to be a cutoff function with for the balls $B_{\theta R}\left(x_{0}\right)$ and $B_{R}\left(x_{0}\right)$ in the usual sense:

$$
\begin{aligned}
& \varphi \in C_{c}^{\infty}(\Omega), 0 \leq \varphi \leq 1, \varphi \equiv 0 \text { outside of } B_{R}\left(x_{0}\right) \\
& \varphi \equiv 1 \text { on } B_{\theta R}\left(x_{0}\right), \sup \left|D^{\delta} \varphi\right| \leq C((1-\theta) R)^{-|\delta|}
\end{aligned}
$$

for any multi-index δ with $|\delta| \leq m$ [Our proof doesn't depend on the case where $|\delta|>m$]. Also C can be made to only depend on δ.

With such a φ we have that

$$
\begin{equation*}
\sup \left|D^{\delta} \varphi^{2 m}\right| \leq C((1-\theta) R)^{-|\delta|} \varphi^{m}, \quad \text { for any } \delta \text { with }|\delta| \leq m \tag{6}
\end{equation*}
$$

Details (by induction):

This comes down to an appropriate use of the chain rule for weak derivatives:

$$
\sup \left|D^{\delta} \varphi^{2}\right| \leq \sup \left|2 \varphi D^{\delta} \varphi\right|
$$

So

$$
D^{\delta} \varphi^{2(m+1)}=\sum_{\alpha+\beta=\delta} \frac{\delta!}{\alpha!\beta!} D^{\alpha}\left(\varphi^{2 m}\right) D^{\beta}\left(\varphi^{2}\right)
$$

so

$$
\begin{aligned}
\sup \left|D^{\delta} \varphi^{2(m+1)}\right| & \leq \sum_{\alpha+\beta=\delta} C((1-\theta) R)^{-|\alpha|} \varphi^{m} \cdot 2 \varphi C((1-\theta) R)^{-|\beta|} \varphi \\
& \leq C^{\prime}((1-\theta) R)^{-|\delta|} \varphi^{m+1}
\end{aligned}
$$

for some new constant C^{\prime}.
Now (3) will also hold for the $C_{c}^{\infty}(\Omega)$ function $\varphi^{\prime}=\varphi^{2 m}$. If we substitute then $\varphi^{2 m}$ in place of φ in $(3 / 4)$, and use (5) twice we get:

$$
\begin{aligned}
\text { new } L H S= & \int_{B_{R}\left(x_{0}\right)} \sum_{|\alpha|=m}\left|D^{\alpha} u\right| \varphi^{2 m} \\
\leq & m!\int_{B_{R}\left(x_{0}\right)} \sum_{|\beta| \leq m}\left(\left|f_{\beta}\right| \sum_{\gamma+\delta=\beta}\left(\left|D^{\gamma} u\right|\left|D^{\delta} \varphi^{2 m}\right|\right)\right) \\
& +M m!\int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\alpha| \leq m}\left|D^{\alpha} u\right|\right)\left(\sum_{|\delta| \leq m,|\gamma| \leq m-1}\left(\left|D^{\gamma} u\right|\left|D^{\delta} \varphi^{2 m}\right|\right)\right) \\
\leq & m!\int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\alpha| \leq m}\left|D^{\alpha} u\right|\right)\left(\sum_{|\beta| \leq m}\left|f_{\beta}\right| \varphi^{m} \cdot \sup _{|\delta| \leq m}\left\{C((1-\theta) R)^{-|\delta|}\right\}\right) \\
& +M m!\int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\alpha| \leq m}\left|D^{\alpha} u\right|\right)\left(\sum_{|\gamma| \leq m-1}\left(\left|D^{\gamma} u\right| \varphi^{m}\right) \cdot \sup _{|\delta| \leq m}\left\{C((1-\theta) R)^{-|\delta|}\right\}\right) \\
\leq & C \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\alpha| \leq m}\left|D^{\alpha} u\right| \varphi^{m}\right)\left(\sum_{|\gamma| \leq m-1}\left|D^{\gamma} u\right|+\sum_{|\beta| \leq m}\left|f_{\beta}\right|\right)
\end{aligned}
$$

for some new constant C which depends on M, μ, θ, R, m, n.

Rewrite the last line as

$$
\begin{align*}
& C \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\alpha|=m}\left|D^{\alpha} u\right| \varphi^{m}\right)\left(\sum_{|\gamma| \leq m-1}\left|D^{\gamma} u\right|+\sum_{|\beta| \leq m}\left|f_{\beta}\right|\right) \tag{7}\\
+ & C \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\alpha| \leq m-1}\left|D^{\alpha} u\right| \varphi^{m}\right)\left(\sum_{|\gamma| \leq m-1}\left|D^{\gamma} u\right|+\sum_{|\beta| \leq m}\left|f_{\beta}\right|\right) \tag{8}
\end{align*}
$$

Term (6) is the same as

$$
C \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\alpha|=m,|\gamma| \leq m-1}\left|D^{\alpha} u\right| \varphi^{m}\left|D^{\gamma} u\right|\right)+C \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\alpha|=m,|\beta| \leq m}\left|D^{\alpha} u\right| \varphi^{m}\left|f_{\beta}\right|\right)
$$

Now use Cauchy's inequality $a b \leq \varepsilon a^{2} / 2+b^{2} /(2 \varepsilon)$ on these terms, to show that they are less than

$$
2 C K \varepsilon \int_{B_{R}\left(x_{0}\right)} \sum_{|\alpha|=m}\left|D^{\alpha} u\right|^{2} \varphi^{2 m}+\frac{C K}{2 \varepsilon} \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\gamma| \leq m-1}\left|D^{\gamma} u\right|^{2}+\sum_{|\beta| \leq m}\left|f_{\beta}\right|^{2}\right)
$$

where $K=$ number of multi-indices $\leq m$. Do the same for term (7) to get that it is \leq :

$$
2 C K \varepsilon \int_{B_{R}\left(x_{0}\right)} \sum_{|\alpha| \leq m-1}\left|D^{\alpha} u\right|^{2} \varphi^{2 m}+\frac{C K}{2 \varepsilon} \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\gamma| \leq m-1}\left|D^{\gamma} u\right|^{2}+\sum_{|\beta| \leq m}\left|f_{\beta}\right|^{2}\right)
$$

Use this to write

$$
\begin{aligned}
\int_{\Omega} \sum_{|\alpha|=m}\left|D^{\alpha} u\right|^{2} \varphi^{2 m} \leq & 2 C K \varepsilon \int_{B_{R}\left(x_{0}\right)} \sum_{|\alpha|=m}\left|D^{\alpha} u\right|^{2} \varphi^{2 m}+\frac{C K}{2 \varepsilon} \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\gamma| \leq m-1}\left|D^{\gamma} u\right|^{2}+\sum_{|\beta| \leq m}\left|f_{\beta}\right|^{2}\right) \\
& +2 C K \varepsilon \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\alpha| \leq m-1}\left|D^{\alpha} u\right|^{2} \varphi^{2 m}\right)+\frac{C K}{2 \varepsilon} \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\gamma| \leq m-1}\left|D^{\gamma} u\right|^{2}+\sum_{|\beta| \leq m}\left|f_{\beta}\right|^{2}\right)
\end{aligned}
$$

We can pull over the 1st and 3rd term on the RHS to the other side, and add in to both sides

$$
+\int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\alpha| \leq m-1}\left|D^{\alpha} u\right|^{2} \varphi^{2 m}\right)
$$

to get

$$
(1-2 C K \varepsilon) \int_{\Omega} \sum_{|\alpha| \leq m}\left|D^{\alpha} u\right|^{2} \varphi^{2 m} \leq\left(\frac{C K}{\varepsilon}+1\right) \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\gamma| \leq m-1}\left|D^{\gamma} u\right|^{2}+\sum_{|\beta| \leq m}\left|f_{\beta}\right|^{2}\right)
$$

\Longrightarrow (with appropriate choice of ε)

$$
\int_{\Omega} \sum_{|\alpha| \leq m}\left|D^{\alpha} u\right|^{2} \varphi^{2 m} \leq C^{\prime} \int_{B_{R}\left(x_{0}\right)}\left(\sum_{|\gamma| \leq m-1}\left|D^{\gamma} u\right|^{2}+\sum_{|\beta| \leq m}\left|f_{\beta}\right|^{2}\right)
$$

for some new constant C^{\prime} depending on M, μ, θ, R, m, n. This implies Lemma 1.

For the proof of the Theorem we need some results about difference quotients:
If f is a real valued function defined on a domain $\Omega \subset \mathbb{R}^{n}$, a difference quotient in the j-th direction is

$$
\Delta_{j}^{h} f:=\frac{f\left(x+h e_{j}\right)-f(x)}{h}
$$

defined on a domain $\Omega_{|h|}$. We need the following 6 facts (for $h \neq 0$):
(a) $\Delta_{j}^{h}(f+g)=\Delta_{j}^{h} f+\Delta_{j}^{h} g$ on $B_{R-|h|}\left(x_{0}\right)$ (Obvious)
(b) $\Delta_{j}^{h}(f g)=g \Delta_{j}^{h} f+\tilde{f} \Delta_{j}^{h} g$ for $f, g \in L^{1}\left(B_{R}\left(x_{0}\right)\right)$, and where $\tilde{f}(x)=f\left(x+h e_{j}\right)$:

$$
\begin{aligned}
\Delta_{j}^{h}(f g) & =\frac{1}{h}\left(f\left(x+h e_{j}\right) g\left(x+h e_{j}\right)-f(x) g(x)\right) \\
& =\frac{1}{h}\left(f\left(x+h e_{j}\right) g\left(x+h e_{j}\right)-f\left(x+h e_{j}\right) g(x)+f\left(x+h e_{j}\right) g(x)-f(x) g(x)\right) \\
& =g \Delta_{j}^{h} f+\tilde{f} \Delta_{j}^{h}
\end{aligned}
$$

(c) $D^{\alpha} \Delta_{j}^{h} f=\Delta_{j}^{h} D^{\alpha} f$ on $B_{R-|h|}\left(x_{0}\right)$ and for $f \in H^{m}\left(B_{R}\left(x_{0}\right)\right)$ and $|\alpha| \leq m$: This follows from distributivity of the weak derivative.
(d) Integration by parts formula:

$$
\int_{B_{R}\left(x_{0}\right)} f \Delta_{j}^{h} g d x=-\int_{B_{R}\left(x_{0}\right)} g \Delta_{j}^{-h} f d x
$$

whenver $f, g \in L^{1}\left(B_{R}\left(x_{0}\right)\right)$ and $f g$ vanishes outside of $B_{R-|h|}\left(x_{0}\right)$. By straight forward calculation:

$$
\int_{B_{R}\left(x_{0}\right)} f \Delta_{j}^{h} g d x=\frac{1}{h} \int_{B_{R}\left(x_{0}\right)} f(x) g\left(x+h e_{j}\right)-\frac{1}{h} \int_{B_{R}\left(x_{0}\right)} f(x) g(x)
$$

and

$$
\begin{aligned}
-\int_{B_{R}\left(x_{0}\right)} g \Delta_{j}^{-h} f d x & =-\left[\left(\frac{1}{-h}\right) \int_{B_{R}\left(x_{0}\right)} g(x) f\left(x+h e_{j}\right)-\left(\frac{1}{-h}\right) \int_{B_{R}\left(x_{0}\right)} g(x) f(x)\right] \\
& =\frac{1}{h} \int_{B_{R}\left(x_{0}\right)} g\left(y-h e_{j}\right) f(y)-\frac{1}{h} \int_{B_{R}\left(x_{0}\right)} g(x) f(x)
\end{aligned}
$$

which are the same after change of variables $y=x+h e_{j}$.
(e) Our condition $\left(B_{k}\right)$ implies:

$$
\left|\Delta_{j}^{h} D^{\gamma} a_{\alpha \beta}(x)\right| \leq M \quad \text { a.e. } \quad x \in \Omega_{|h|},|\gamma| \leq k-1
$$

(f) If $v \in H^{l}\left(B_{R}\left(x_{0}\right)\right)$ then

$$
\left\|\Delta_{j}^{h} v\right\|_{l-1, B_{R-|h|}\left(x_{0}\right)} \leq\|v\|_{l, B_{R}\left(x_{0}\right)}
$$

Details of (e):

Because $|\gamma|<k$ there exists one more weak derivative and we can write

$$
\Delta_{j}^{h}\left(D^{\gamma} a_{\alpha \beta}\right)=\frac{1}{h} \int_{0}^{h} D_{j} D^{\gamma}\left(x+t e_{j}\right) d t
$$

Suppose (for purposes of getting a contradiction) that

$$
\sup \left|D_{j} D^{\gamma} a_{\alpha \beta}\right|<\Delta_{j}^{h}\left(D^{\gamma} a_{\alpha \beta}\right)
$$

Then

$$
\begin{aligned}
\Delta_{j}^{h}\left(D^{\gamma} a_{\alpha \beta}\right) & =\frac{1}{h} \int_{0}^{h} D_{j} D^{\gamma}\left(x+t e_{j}\right) d t \\
& =D_{j}\left(D^{\gamma} a_{\alpha \beta}\right) \\
& <\Delta_{j}^{h}\left(D^{\gamma} a_{\alpha \beta}\right)
\end{aligned}
$$

which is a contradiction.

Details of (f):

We show that $\left\|\Delta_{j}^{h} v\right\|_{0, B_{R-|h|}\left(x_{0}\right)} \leq\left\|D_{j} v\right\|_{0, B_{R}\left(x_{0}\right)}$ where $v \in H^{1}\left(B_{R}\left(x_{0}\right)\right)$. This will show (f) by applying it to each term in the H^{l-1} norm:

$$
\begin{aligned}
& \left|\Delta_{j}^{h} v\right|=\left|\frac{v\left(x+h e_{j}\right)-v(x)}{h}\right| \leq \frac{1}{h} \int_{0}^{h}\left|D_{j} v\left(x_{1}, \ldots, x_{j}+\tau, \ldots x_{n}\right)\right| d \tau \\
& \leq \frac{1}{h} \cdot h^{1 / 2}\left(\int_{0}^{h}\left|D_{j} v\left(x_{1}, \ldots, x_{j}+\tau, \ldots x_{n}\right)\right|^{2} d \tau\right)^{1 / 2} \\
& \begin{array}{|c}
\left|\Delta_{j}^{h} v\right|^{2}
\end{array} \leq \frac{1}{h} \int_{0}^{h}\left|D_{j} v\left(x_{1}, \ldots, x_{j}+\tau, \ldots x_{n}\right)\right|^{2} d \tau \\
& \int_{B_{R-|h|}\left(x_{0}\right)}\left|\Delta_{j}^{h} v\right|^{2} \leq \frac{1}{h} \int_{B_{R-|h|}\left(x_{0}\right)} \int_{0}^{h}\left|D_{j} v\right|^{2} d \tau d x \\
& \leq \frac{1}{h} \int_{0}^{h} \int_{B_{R-|h|}\left(x_{0}\right)}\left|D_{j} v\right|^{2} d x d \tau \\
& =\frac{1}{h} \int_{0}^{h}\left\|D_{j} v\right\|_{0, B_{R-|h|}\left(x_{0}\right)} d \tau \\
& =\left\|D_{j} v\right\|_{0, B_{R-|h|}\left(x_{0}\right)} \leq\left\|D_{j} v\right\|_{0, B_{R}\left(x_{0}\right)}
\end{aligned}
$$

Proof of Theorem 1:

(Case $k=1$)
Choose $h>0$ s.t. $\overline{B_{R}}\left(x_{0}\right) \subset \Omega_{|h|}$. If $\zeta \in C_{c}^{\infty}(\Omega)$ then $\Delta_{j}^{-h} \zeta \in C_{c}^{\infty}\left(\Omega_{|h|}\right)$ and we can use it as our test function in (2):

$$
\int_{\Omega} \sum_{|\alpha|,|\beta| \leq m}(-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u D^{\beta}\left(\Delta_{j}^{-h} \zeta\right)=\int_{\Omega} \sum_{|\beta| \leq m}(-1)^{|\beta|} f_{\beta} D^{\beta}\left(\Delta_{j}^{-h} \zeta\right)
$$

using fact (c)

$$
\int_{\Omega} \sum_{|\alpha|,|\beta| \leq m}(-1)^{|\beta|} a_{\alpha \beta} D^{\alpha} u \Delta_{j}^{-h}\left(D^{\beta} \zeta\right)=\int_{\Omega} \sum_{|\beta| \leq m}(-1)^{|\beta|} f_{\beta} \Delta_{j}^{-h}\left(D^{\beta} \zeta\right)
$$

using fact (d)

$$
-\int_{\Omega} \sum_{|\alpha|,|\beta| \leq m}(-1)^{|\beta|} \Delta_{j}^{h}\left(a_{\alpha \beta} D^{\alpha} u\right) D^{\beta} \zeta=-\int_{\Omega} \sum_{|\beta| \leq m}(-1)^{|\beta|} \Delta_{j}^{h}\left(f_{\beta}\right) D^{\beta} \zeta
$$

using fact (b) and (c)

$$
-\int_{\Omega} \sum_{|\alpha|,|\beta| \leq m}(-1)^{|\beta|}\left(\Delta_{j}^{h}\left(a_{\alpha \beta}\right) D^{\alpha} u+\tilde{a}_{\alpha \beta} D^{\alpha}\left(\Delta_{j}^{h} u\right)\right) D^{\beta} \zeta=-\int_{\Omega} \sum_{|\beta| \leq m}(-1)^{|\beta|} \Delta_{j}^{h}\left(f_{\beta}\right) D^{\beta} \zeta
$$

with some variable rebranding:

$$
\begin{equation*}
\int_{\Omega} \sum_{|\alpha|,|\beta| \leq m}(-1)^{|\beta|} \tilde{a}_{\alpha \beta} D^{\alpha} v_{h} D^{\beta} \zeta=\int_{\Omega} \sum_{|\beta| \leq m}(-1)^{|\beta|} F_{\beta, h} D^{\beta} \zeta \tag{9}
\end{equation*}
$$

where $\tilde{a}_{\alpha \beta}(x)=a_{\alpha \beta}\left(x+h e_{j}\right), v_{h}=\Delta_{j}^{h} u$ and

$$
F_{\beta, h}=\Delta_{j}^{h}\left(f_{\beta}\right)-\sum_{|\alpha| \leq m}\left(\Delta_{j}^{h} a_{\alpha \beta}\right) D^{\alpha} u
$$

Ah! Now we can use our helpful lemma (Lemma 1) on (8) [$\tilde{a}_{\alpha \beta}$ still satisfies the ellipticity condition (E) and boundedness (B) because it is just $a_{\alpha \beta}$ at a different point in Ω.] For any $\theta \in(0,1)$

$$
\left\|v_{h}\right\|_{m, B_{\theta R}\left(x_{0}\right)} \leq C\left(\left\|v_{h}\right\|_{m-1, B_{R}\left(x_{0}\right)}+\sum_{|\beta| \leq m}\left\|F_{\beta, h}\right\|_{0, B_{R}\left(x_{0}\right)}\right)
$$

where C does not depend on h. Because of (e) and (f) [and remembering that we made some extra assumptions on f_{β} in the statement of the theorem: $\left.f_{\beta} \in H^{k}(\Omega)\right]$ we have that

$$
\begin{equation*}
\sup _{B_{R-|h|}\left(x_{0}\right)}\left|\Delta_{j}^{h} a_{\alpha \beta}\right| \leq M \quad \text { and } \quad\left\|\Delta_{j}^{h} f_{\beta}\right\|_{0, B_{R-|h|}\left(x_{0}\right)} \leq\left\|f_{\beta}\right\|_{1, B_{R}\left(x_{0}\right)} \tag{10}
\end{equation*}
$$

which we use to rewrite an upper estimate of $\left\|F_{\beta, h}\right\|_{0, B_{R}\left(x_{0}\right)}$ by applying Cauchy's inequality:

$$
\left\|F_{\beta, h}\right\|_{0, B_{R}\left(x_{0}\right)} \leq\left\|f_{\beta}\right\|_{1, B_{R}\left(x_{0}\right)}+K M^{2}\|u\|_{m, B_{R}\left(x_{0}\right)}
$$

This implies for some new constant C independent of h

$$
\left\|v_{h}\right\|_{m, B_{\theta R}\left(x_{0}\right)} \leq C\left(\|u\|_{m, B_{R}\left(x_{0}\right)}+\sum_{|\beta| \leq m}\left\|f_{\beta}\right\|_{1, B_{R}\left(x_{0}\right)}\right)
$$

So we get that

$$
\underset{h \downarrow 0}{\limsup }\left\|v_{h}\right\|_{m, B_{\theta R}\left(x_{0}\right)}
$$

exists and is less than some constant which depends on θ, and some other stuff. We now apply:

Lemma 7 (Ch. 5):

If $u \in L_{l o c}^{2}(\Omega)$, and if

$$
\limsup _{h \downarrow 0}\left\|\Delta_{j}^{h} u\right\|_{L^{2}(K)} \leq c_{K}(<\infty)
$$

for each compact $K \subset \Omega$. Then u has a weak derivative $D_{j} u \in L_{l o c}^{2}(\Omega)$, and $\Delta_{j}^{h} u \rightharpoonup D_{j} u$ in the weak sense

$$
\left\langle\Delta_{j}^{h} u, \varphi\right\rangle_{L^{2}} \rightarrow\left\langle D_{j} u, \varphi\right\rangle_{L^{2}} \quad \forall \varphi \in C_{c}^{\infty}(\Omega)
$$

Further, if $c_{K}=c, c$ independent of K, then $D_{j} u \in L^{2}(\Omega)$.

Proof:

Take a nested sequence of compact sets $K_{i} \subset \Omega$ s.t. $K_{i} \subset K_{k}$ whenever $i \leq k$, that exhaust $\Omega: \bigcup_{i>0} K_{i}=\Omega$. Observe that $L^{2}\left(K_{i}\right)$ are Banach spaces so that any sequence of L^{2}-norm bounded functions will have a subsequence that is convergent in $L^{2}\left(K_{i}\right)$. Since the K_{i} are nested we can actually get a sequence $\Delta_{j}^{h_{k}} u$ which converges in every $L^{2}\left(K_{i}\right)$. Define $D_{j} u$ to be the function that the sequence $\Delta_{j}^{h_{k}} u$ converges to. Now we have to show that $\Delta_{j}^{h} u$ converges in the weak sense to $D_{j} u$. Define a function $N: \mathbb{R} \rightarrow \mathbb{Z}_{+}$by

$$
N(h)=\sup \left\{h_{k} \mid k \in \mathbb{Z}_{+}, h_{k} \leq h\right\}
$$

and write

$$
\begin{aligned}
\left\langle\Delta_{j}^{h} u-D_{j} u, \varphi\right\rangle_{L^{2}} & =\left\langle\Delta_{j}^{h} u-\Delta_{j}^{N(h)} u+\Delta_{j}^{N(h)} u-D_{j} u, \varphi\right\rangle_{L^{2}} \\
& =\left\langle\Delta_{j}^{h} u-\Delta_{j}^{N(h)} u, \varphi\right\rangle+\left\langle\Delta_{j}^{N(h)} u-D_{j} u, \varphi\right\rangle
\end{aligned}
$$

The second term clearly goes to $0 \mathrm{~b} / \mathrm{c} \Delta_{j}^{N(h)} u \rightarrow D_{j} u$ in the L^{2}-norm. We want to show that the first term goes to 0 also as $h \downarrow 0$. We write using fact (d):

$$
\left\langle\Delta_{j}^{h} u-\Delta_{j}^{N(h)} u, \varphi\right\rangle \leq-\left\langle u,\left(\Delta_{j}^{-h}-\Delta_{j}^{-N(h)}\right) \varphi\right\rangle
$$

and the right hand side clearly goes to 0 as $h \downarrow 0$, because φ is differentiable.
Finally, if $c_{K}=c$ independent of K, then the sequence

$$
A_{i}:=\lim _{k \rightarrow \infty} \int_{K_{i}}\left|\Delta_{j}^{h_{k}} u\right|^{2}
$$

will be bounded by c, and since K_{i} exhaust $\Omega,\left\|D_{j} u\right\|_{L^{2}(\Omega)} \leq c$.
to show that v_{h} is weakly convergent to some $v=D_{j} u$. Similarly by (9) and our Lemma $7, \Delta_{j}^{h} a_{\alpha \beta}$ and $\Delta_{j}^{h} f_{\beta}$ weakly converge to $D_{j} a_{\alpha \beta}$ and $D_{j} f_{\beta}$ resp. in $L^{2}\left(B_{\theta R}\left(x_{0}\right)\right)$.

So $u \in H_{\mathrm{loc}}^{m+1}\left(B_{R}\left(x_{0}\right)\right)$ and we can pass to the limit in (8) to get that $D_{j} u$ satisfies

$$
\begin{equation*}
\int_{\Omega} \sum_{|\alpha|,|\beta| \leq m}(-1)^{|\beta|} \tilde{a}_{\alpha \beta} D^{\alpha}\left(D_{j} u\right) D^{\beta} \zeta=\int_{\Omega} \sum_{|\beta| \leq m}(-1)^{|\beta|} F_{\beta} D^{\beta} \zeta \tag{11}
\end{equation*}
$$

where

$$
F_{\beta}=D_{j} f_{\beta}-\sum_{|\alpha| \leq m}\left(D_{j} a_{\alpha \beta}\right) D^{\alpha} u
$$

Thus summing over $j=1, \ldots, n$:

$$
\|u\|_{m+1, B_{\theta R}\left(x_{0}\right)} \leq C\left(\|u\|_{m, B_{R}\left(x_{0}\right)}+\sum_{|\beta| \leq m}\left\|f_{\beta}\right\|_{1, B_{R}\left(x_{0}\right)}\right)
$$

with some new constant C depending on m, n, M, μ, θ, R.

We can repeat this procedure starting from (10) provided condition B_{2} holds (F_{β} contains terms with first derivatives of $a_{\alpha \beta}$). In fact we can repeat it at most k times as long as B_{k} holds, each time with possibly a different value of θ. Since these θ 's are completely arbitrary we can produce

$$
\|u\|_{m+k, B_{\theta R}\left(x_{0}\right)} \leq C\left(\|u\|_{m, B_{R}\left(x_{0}\right)}+\sum_{|\beta| \leq m}\left\|f_{\beta}\right\|_{k, B_{R}\left(x_{0}\right)}\right) .
$$

Now replace R with θR in the above inequality:

$$
\|u\|_{m+k, B_{\theta^{2} R}\left(x_{0}\right)} \leq C\left(\|u\|_{m, B_{\theta R}\left(x_{0}\right)}+\sum_{|\beta| \leq m}\left\|f_{\beta}\right\|_{k, B_{\theta R}\left(x_{0}\right)}\right)
$$

and apply Lemma 1 to the term $\|u\|_{m, B_{\theta R}\left(x_{0}\right)}$ to get

$$
\|u\|_{m+k, B_{\theta^{2} R}\left(x_{0}\right)} \leq C\left(C^{\prime}\left(\|u\|_{m-1, B_{R}\left(x_{0}\right)}+\sum_{|\beta| \leq m}\left\|f_{\beta}\right\|_{0, B_{R}\left(x_{0}\right)}\right)+\sum_{|\beta| \leq m}\left\|f_{\beta}\right\|_{k, B_{\theta R}\left(x_{0}\right)}\right)
$$

and after adjusting the constant C and remembering that θ was arbitrary, we get:

$$
\|u\|_{m+1, B_{\theta R}\left(x_{0}\right)} \leq C\left(\|u\|_{m-1, B_{R}\left(x_{0}\right)}+\sum_{|\beta| \leq m}\left\|f_{\beta}\right\|_{k, B_{R}\left(x_{0}\right)}\right)
$$

which is what we wanted to show.

