Bochner Technique:

Most of this heavily references Peter Petersen's Riemannian Geometry book. [Left to put in: Proof of Killing's Equation, Relationship of Lie algebra of Killing fields to Lie algebra of the isometry group of M]

A vector field X is Killing if the local flows generated by X act by isometries. We will prove the following theorem:

Theorem 1.5: (Bochner, 1946) Suppose (M, g) is compact, oriented, and has $Ric \leq 0$. Then every Killing field is parallel. Furthermore, if Ric < 0, then there are no nontrivial Killing fields.

The theorem is important because it constrains the isometry group of (M, g). For instance if Ric < 0, then the isometry group of M is finite.

Now suppose X is a Killing field. Let $f = \frac{1}{2} |X|^2 = \frac{1}{2} \langle X, X \rangle$. We would like to produce the following formula which will help us prove the theorem:

$$\Delta f = -\operatorname{Ric}\left(X, X\right) + \left|\nabla X\right|^{2}.$$
(1)

Some Explanation of the formula:

1.) Here Ric is the Ricci Curvature, which is the metric contraction of the Curvature tensor R in the 1 and 4 places: (if $\{e_i\}$ is an orthonormal basis of T_pM)

$$\operatorname{Ric}(V, W) = \sum_{i} \langle R(e_{i}, V) W, e_{i} \rangle.$$

2.) $|\nabla X|$ is the Euclidean norm of the (1,1)-tensor ∇X , which we view as a linear endomorphism $\nabla X : TM \to TM$, given by

$$\left(\nabla X\right)(v) = \nabla_v X.$$

In coordinates $\nabla X = \frac{\partial}{\partial x^i} X^j E_j \otimes \sigma^i + X^j \Gamma^k_{ij} \cdot E_k \otimes \sigma^i.$

Brief Review of the Euclidean norm:

Let T be a (1, 1)-tensor which we interpret as an endomorphism $T: TM \to TM$ and is given in coordinates by

$$T_i^i \cdot E_i \otimes \sigma^j$$

In general the Euclidean norm of T is given by

$$|T| = \sqrt{\operatorname{tr}\left(T \circ T^*\right)}$$

where $T^*: TM \to TM$ is the adjoint of T (here interpreted after type change using the metric g). $[T^*$ would be a map from $T^*M \to T^*M$ of the form

$$T_i^j \cdot \sigma^i \otimes E_j,$$

but since T_pM is an inner product space w.r.t. g, we can make the identifications

$$\sigma^i \mapsto g^{ij} E_j$$
$$E_j \mapsto g_{ij} \sigma^i$$

which converts T^* to a map from $TM \to TM$:

$$T_i^j g_{jk} g^{il} \cdot E_l \otimes \sigma^k.$$
]

 So

$$(T \circ T^*) (E_t) = (T^r_s \cdot E_r \otimes \sigma^s) \left(\left(T^j_i g_{jk} g^{il} \cdot E_l \otimes \sigma^k \right) (E_t) \right)$$

= $(T^r_s \cdot E_r \otimes \sigma^s) \left(T^j_i g_{jt} g^{il} \cdot E_l \right)$
= $T^r_l T^j_i g_{jt} g^{il} \cdot E_r$

which means that

$$(T \circ T^*) = T_l^r T_i^j g_{jt} g^{il} \cdot E_r \otimes \sigma^t$$

 $\operatorname{tr}\left(T\circ T^*\right) = T_l^r T_i^j g_{jr} g^{il}.$

so that the trace is just

3.) Δf is the Laplacian of f:

 $\operatorname{div}(\operatorname{grad} f)$

where $\operatorname{grad} f$ is the vector field defined such that

$$\langle \operatorname{grad} f, V \rangle = V(f) = D_V f$$

for all vector fields V, and div X is the trace of the linear map $Y \mapsto \nabla_Y X$. In coordinates this map is given by

$$\frac{\partial}{\partial x^j} \left(X^i \right) E_i \otimes \sigma^j + X^i \Gamma^k_{ji} \cdot E_k \otimes \sigma^j,$$

and the trace is given by $\frac{\partial}{\partial x^i} (X^i) + X^i \Gamma^j_{ji}$.

For the following we need Killing's equation: If X is a Killing field on M then

$$\langle \nabla_Y X, Z \rangle + \langle \nabla_Z X, Y \rangle = 0$$

We first define a skew-adjoint (1,1)-tensor by $T(v) = \nabla_v X$. To be skew-adjoint means that $\forall v, w \in T_p M$:

$$\langle T(v), w \rangle = -\langle v, T(w) \rangle$$
 or equiv. $\langle T(v), v \rangle = 0$

To show Formula (1) we prove the following in sequence:

(1) grad $f = \nabla f = -T(X) = -\nabla_X X$:

$$\begin{aligned} \langle \operatorname{grad} f, V \rangle &= V(f) \\ &= \frac{1}{2} V \langle X, X \rangle \\ &= \frac{1}{2} \left(\langle \nabla_V X, X \rangle + \langle X, \nabla_V X \rangle \right) \\ &= \langle \nabla_V X, X \rangle \\ &= - \langle \nabla_X X, V \rangle \,. \end{aligned}$$

(2) $\nabla^2 f = \nabla (\text{grad } f) = -T^2 - \nabla_X T - R_X \text{ (where } R_X (V) = R(V, X) X)$: Apply $\nabla^2 f$ to a vector field V:

which comes from the definition of the curvature tensor. This equals

$$= -R_X(V) - \nabla_X \nabla_V X + \nabla_{\nabla_X V} X - \nabla_{\nabla_V X} X$$

because $[V, X] = \nabla_V X - \nabla_X V$, since ∇ is symmetric. Since $T \circ T(V) = T(\nabla_V X) = \nabla_{\nabla_V X} X$, this equals

$$= -R_X(V) - T \circ T(V) - \nabla_X \nabla_V X + \nabla_{\nabla_X V} X.$$

Leibnitz Rule for covariant derivatives of tensors:

Because we require that

$$\nabla_X \left(T \left(V \right) \right) = \left(\nabla_X T \right) \left(V \right) + T \left(\nabla_X V \right)$$
$$\left(\nabla_X T \right) \left(V \right) = \nabla_X \nabla_V X - \nabla_{\nabla_X V} X$$

 \mathbf{SO}

$$\left(\nabla^2 f\right)(V) = -\left(R_X\right)(V) - \left(T^2\right)(V) - \left(\nabla_X T\right)(V)$$

which shows (2).

we have that

(3) We take the trace of $\nabla^2 f = -T^2 - \nabla_X T - R_X$, to get $\Delta f = -\text{Ric}(X, X) + |T|^2 = -\text{Ric}(X, X) + |\nabla X|^2$:

This is because of 3 facts:

For skew symmetric (1,1)-tensors (in coordinates $T = T_j^i \cdot E_i \otimes \sigma_j$):

- (a) $T^* = -T$. Which implies that $\operatorname{tr}(-T^2) = \operatorname{tr}(T \circ T^*) = |T|^2$.
- (b) $\operatorname{tr}(T) := T_i^i = 0.$
- (c) The covariant derivative of T (in the direction of a vector field X) is also skew symmetric.

Proof of (b):

Let T be a (1,1)-tensor that is skew-symmetric w.r.t. the metric q

 $\langle T(v), v \rangle = 0 \quad \forall v,$

with components T_j^i written w.r.t. a frame and dual frame $\{E_i\}$ and $\{\sigma^i\}$. We want to first transform T so that it is w.r.t. an orthonormal basis $\{\bar{E}_i\}$ w.r.t. g. Let A be such a coordinate transformation matrix

 $\bar{E}_i = A_i^j E_j.$

Then the transformed components of T are given by

$$\bar{T}_{j}^{i} = A_{l}^{i} T_{k}^{l} \left(A^{-1} \right)_{j}^{k}$$

In our new frame it is of course still true that for any v

$$\left\langle \left(\bar{T}_{j}^{i} \cdot \bar{E}_{i} \otimes \bar{\sigma}^{j} \right) (v), v \right\rangle = 0.$$

Let $v = \overline{E}_k$ for a fixed k. Then

$$0 = \left\langle \left(\bar{T}_{j}^{i} \cdot \bar{E}_{i} \otimes \bar{\sigma}^{j} \right) \left(\bar{E}_{k} \right), \bar{E}_{k} \right\rangle = \bar{T}_{k}^{k}$$

where the last expression is not meant to be a summation, but just the kth diagonal element of the matrix \bar{T}_j^i . Since all diagonal elements of \bar{T}_j^i are 0, the trace of $(\bar{T}_j^i \cdot \bar{E}_i \otimes \bar{\sigma}^j)$ is $\sum_k \bar{T}_k^k = 0$. Now \bar{T}_j^i is related to T_j^i by a similarity transformation $A \Longrightarrow \operatorname{tr} (T_j^i) = 0$ also.

Proof of (c):

That T is skew symmetric means that for any vector field $v, \langle T(v), v \rangle \equiv 0$ on M. So for any vector field X:

 $X\left\langle T\left(v\right),v\right\rangle =0.$

Then

$$0 = X \langle T(v), v \rangle = \langle \nabla_X (T(v)), v \rangle + \langle T(v), \nabla_X v \rangle$$

= $\langle (\nabla_X T) (v) + T (\nabla_X v), v \rangle + \langle T(v), \nabla_X v \rangle$
= $\langle (\nabla_X T) (v) + T (\nabla_X v), v \rangle - \langle v, T (\nabla_X v) \rangle$
= $\langle (\nabla_X T) (v), v \rangle$

where we used the skew adjointness of T to get from the 2nd to 3rd line. So $\nabla_X T$ is skew symmetric also.

Before we go on we must have the following result which is proved using Stoke's theorem:

If M is a compact oriented manifold, and d vol is the volume form, then for any smooth function f

$$\int_M \Delta f \, d\text{vol} = 0.$$

We want to now use this result and our formula (1) to prove the theorem. We restate it:

Theorem 1.5: Suppose (M,g) is compact, oriented, and has $Ric \leq 0$. Then every Killing field is parallel. Furthermore, if Ric < 0, then there are no nontrivial Killing fields.

Proof: Let X be a Killing Field and define $f = \frac{1}{2} |X|^2$. Since Ric ≤ 0

$$0 = \int_{M} \Delta f \, d\text{vol}$$

=
$$\int_{M} \left(-\text{Ric} \left(X, X \right) + \left| \nabla X \right|^{2} \right) d\text{vol}$$

$$\geq \int_{M} \left| \nabla X \right|^{2} d\text{vol}$$

$$\geq 0$$

so $|\nabla X| \equiv 0$, and X is parallel.

If in addition Ric < 0, then for Ric (V, W) to equal 0, either V or W must be the 0 vector. This means that Ric $(X, X) \equiv 0$ iff $X \equiv 0$. So X must be a trivial vector field.

Ch. 6, L. Simon's Lectures in PDE:

We consider PDE's of the form

$$\sum_{\alpha|,|\beta| \le m} D^{\beta} \left(a_{\alpha\beta} D^{\alpha} u \right) = \sum_{|\beta| \le m} D^{\beta} f_{\beta}$$
⁽²⁾

where f_{β} are prescribed $L^2_{\text{loc}}(\Omega)$ functions and $a_{\alpha\beta}$ are locally bounded functions, $a_{\alpha\beta} \in L^{\infty}_{\text{loc}}(\Omega)$. u is a weak solution to (1) if when we multiply each side by $\zeta \in C^{\infty}_{c}(\Omega)$, a test function, and integrate we get equality:

$$\int_{\Omega} \sum_{|\alpha|,|\beta| \le m} (-1)^{|\beta|} a_{\alpha\beta} D^{\alpha} u D^{\beta} \zeta = \int_{\Omega} \sum_{|\beta| \le m} (-1)^{|\beta|} f_{\beta} D^{\beta} \zeta, \tag{3}$$

written out after integration by parts.

Here we only consider regularity results on a ball $B_R(x_0)$, where $\overline{B_R}(x_0) \subset \Omega$.

(E), an ellipticity condition: There exists a $\mu > 0$ s.t.

$$\sum_{|\alpha|,|\beta|=m} a_{\alpha\beta}(x) \lambda_{\alpha}\lambda_{\beta} \ge \mu \sum_{|\alpha|=m} (\lambda_{\alpha})^2$$

for all $x \in \Omega$, and all collections of real numbers $\{\lambda_{\alpha}\}_{|\alpha|=m}$.

 $(B_k) \ a_{\alpha\beta} \in W^{k,\infty}(\Omega)$ and there exists an M > 0 s.t.

$$|D^{\gamma}a_{\alpha\beta}(x)| \leq M$$
 a.e. $x \in B_R(x_0), |\gamma| \leq k$.

Our Main Theorem:

Theorem 1: Assume that in (1), $f_{\beta} \in H^k(\Omega)$. If $u \in H^m(B_R(x_0))$ is a weak solution of (1), if $k \ge 0$, and if (E) and (B_k) hold, then $u \in H^{m+k}_{loc}(B_R(x_0))$ and

$$\|u\|_{m+k,B_{\theta R}(x_0)} \le C\left(\|u\|_{m-1,B_R(x_0)} + \sum_{|\beta| \le m} \|f_\beta\|_{k,B_R(x_0)}\right)$$

for any choice of $\theta \in (0,1)$, where C is a constant depending only on n, m, k, θ, M, μ .

Note: Since the Sobolev embedding theorem can be used to show for l with m + k > n/2 + l, that $H_{\mathrm{loc}}^{m+k}\left(B_{R}\left(x_{0}\right)\right)\subset C^{l}\left(\Omega\right)$ and

$$|u|_{C^{l}(B_{R}(x_{0}))} \leq C ||u||_{m+k,B_{R}(x_{0})},$$

(this is the *harder* version of the embedding theorem) [Here C depends on ???] we can show that under the conditions of Theorem 1, $u \in C^l(B_R(x_0))$.

We need to establish a helpful lemma: Notation for Lemma:

(B) explicit boundedness of $a_{\alpha\beta}$:

$$|a_{\alpha\beta}(x)| \leq M, \quad \forall x \in B_R(x_0), \ |\alpha|, |\beta| \leq m.$$

Lemma 1: If $u \in H^m_{loc}(\Omega)$ is a weak solution of (1), and if (E) and (B) hold, and if $\overline{B_R}(x_0) \subset \Omega$, then for each $\theta \in (0,1)$ we have

$$||u||_{m,B_{\theta R}(x_0)} \le C\left(||u||_{m-1,B_R(x_0)} + \sum_{|\beta| \le m} ||f_{\beta}||_{k,B_R(x_0)}\right),$$

where C depends only on R, M, μ, m, n, θ .

To prove Lemma 1 we need another lemma (also Lemma 1, but from section 5 of Simon's PDE's).

Pre-Lemma 1: If $u \in W_{\text{loc}}^{m,p}(\Omega)$ and if $|\alpha| \leq m$, then $D^{\alpha}u_{\sigma} \to D^{\alpha}u$ pointwise a.e. in Ω , and also locally w.r.t. the $\|\cdot\|_{m,p}$ norm in Ω . (Here u_{σ} is a mollification of u with respect to a sequence of mollifiers ρ_{σ} .)

Proof of Lemma 1:

We have to first show that if u is a weak solution to (1) then (2) will also be satisfied when $\zeta = \varphi h$ with $\varphi \in C_c^{\infty}(\Omega)$ and $h \in H^m_{\text{loc}}(\Omega)$. This is true because $\varphi h_{\sigma} \in C_c^{\infty}(\Omega)$ for sufficiently small σ and, by the pre-lemma, $\lim_{\sigma \to 0} \varphi h_{\sigma} = \sigma h$ w.r.t. the $H^m(\Omega)$ norm: It will be true that

$$\int_{\Omega} \sum_{|\alpha|,|\beta| \le m} (-1)^{|\beta|} a_{\alpha\beta} D^{\alpha} u D^{\beta} (\varphi h_{\sigma}) = \int_{\Omega} \sum_{|\beta| \le m} (-1)^{|\beta|} f_{\beta} D^{\beta} (\varphi h_{\sigma})$$

by definition of weak solution, and since

$$\left(\sum_{|\beta| \le m} \int \left| D^{\beta} \left(\varphi h_{\sigma} \right) - D^{\beta} \left(\varphi h \right) \right|^{2} \right)^{1/2} \to 0 \quad \text{as} \ \sigma \to 0$$

we get

$$\int_{\Omega} \sum_{|\alpha|,|\beta| \le m} \left(-1\right)^{|\beta|} a_{\alpha\beta} D^{\alpha} u D^{\beta} \left(\varphi h\right) = \int_{\Omega} \sum_{|\beta| \le m} \left(-1\right)^{|\beta|} f_{\beta} D^{\beta} \left(\varphi h\right)$$

Now make the careful choice h = u, and we get

$$\int_{\Omega} \sum_{|\alpha|,|\beta| \le m} (-1)^{|\beta|} a_{\alpha\beta} D^{\alpha} u \left(\sum_{\gamma+\delta=\beta} \frac{\beta!}{\gamma! \delta!} D^{\gamma} u D^{\delta} \varphi \right) = \int_{\Omega} \sum_{|\beta| \le m} (-1)^{|\beta|} f_{\beta} \left(\sum_{\gamma+\delta=\beta} \frac{\beta!}{\gamma! \delta!} D^{\gamma} u D^{\delta} \varphi \right).$$

We now impose (E) and (B) to get (3/4):

$$\int_{\Omega} \sum_{|\alpha|=m} |D^{\alpha}u|^2 \varphi \leq m! \int_{\Omega} \sum_{|\beta| \leq m} \left(|f_{\beta}| \sum_{\gamma+\delta=\beta} \left(|D^{\gamma}u| \left| D^{\delta}\varphi \right| \right) \right)$$
(4)

$$+Mm! \int_{\Omega} \left(\sum_{|\alpha| \le m} |D^{\alpha}u| \right) \left(\sum_{|\delta| \le m, |\gamma| \le m-1} \left(|D^{\gamma}u| \left| D^{\delta}\varphi \right| \right) \right)$$
(5)

Details: Set $D^{\alpha}u = \lambda_{\alpha}$ in (E), and multiply both sides by φ (which is positive) gives

$$\mu \int_{\Omega} \sum_{|\alpha|=m} \left(D^{\alpha} u \right)^2 \varphi \leq \int_{\Omega} \sum_{|\alpha|,|\beta|=m} a_{\alpha\beta} \left(D^{\alpha} u \right) \left(D^{\beta} u \right) \varphi.$$

Now adding and subtracting some equal terms gives

$$\begin{split} \int_{\Omega} \sum_{|\alpha|,|\beta|=m} a_{\alpha\beta} \left(D^{\alpha} u \right) \left(D^{\beta} u \right) \varphi &= \int_{\Omega} \sum_{|\alpha|,|\beta|=m} a_{\alpha\beta} \left(D^{\alpha} u \right) \left(D^{\beta} u \right) \varphi \\ &+ \int_{\Omega} \sum_{|\alpha|,|\beta|=m} \left(\left(-1 \right)^{|\beta|} a_{\alpha\beta} D^{\alpha} u \left(\sum_{\gamma+\delta=\beta,|\delta|\geq 1} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi \right) \right) \\ &+ \int_{\Omega} \sum_{|\alpha|,|\beta|=m} \left(\left(-1 \right)^{|\beta|} a_{\alpha\beta} D^{\alpha} u \left(\sum_{\gamma+\delta=\beta,|\delta|\geq 1} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi \right) \right) \\ &- \int_{\Omega} \sum_{|\alpha|,|\beta|=m} \left(\left(-1 \right)^{|\beta|} a_{\alpha\beta} D^{\alpha} u \left(\sum_{\gamma+\delta=\beta,|\delta|\geq 1} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi \right) \right) \\ &= \int_{\Omega} \sum_{|\alpha|,|\beta|\leq m} \left(\left(-1 \right)^{|\beta|} a_{\alpha\beta} D^{\alpha} u \left(\sum_{\gamma+\delta=\beta,|\delta|\geq 1} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi \right) \right) \\ &- \int_{\Omega} \sum_{|\alpha|,|\beta|\leq m} \left(\left(-1 \right)^{|\beta|} a_{\alpha\beta} D^{\alpha} u \left(\sum_{\gamma+\delta=\beta,|\delta|\geq 1} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi \right) \right) \\ &- \int_{\Omega} \sum_{|\alpha|,|\beta|=m} \left(\left(-1 \right)^{|\beta|} a_{\alpha\beta} D^{\alpha} u \left(\sum_{\gamma+\delta=\beta,|\delta|\geq 1} \frac{\beta!}{\gamma!\delta!} D^{\gamma} u D^{\delta} \varphi \right) \right) \\ &- \int_{\Omega} \sum_{|\alpha|$$

Taking absolute values and distributing across integrals and summations gives (3)

Let $\theta \in (0,1)$, and choose φ to be a cutoff function with for the balls $B_{\theta R}(x_0)$ and $B_R(x_0)$ in the usual sense:

$$\varphi \in C_c^{\infty}(\Omega), 0 \le \varphi \le 1, \ \varphi \equiv 0 \text{ outside of } B_R(x_0)$$

$$\varphi \equiv 1 \text{ on } B_{\theta R}(x_0), \ \sup |D^{\delta}\varphi| \le C \left((1-\theta) R \right)^{-|\delta|}$$

for any multi-index δ with $|\delta| \leq m$ [Our proof doesn't depend on the case where $|\delta| > m$]. Also C can be made to only depend on δ .

With such a φ we have that

$$\sup \left| D^{\delta} \varphi^{2m} \right| \le C \left(\left(1 - \theta \right) R \right)^{-|\delta|} \varphi^{m}, \quad \text{for any } \delta \text{ with } |\delta| \le m.$$
(6)

Details (by induction):

This comes down to an appropriate use of the chain rule for weak derivatives:

$$\sup \left| D^{\delta} \varphi^2 \right| \le \sup \left| 2\varphi D^{\delta} \varphi \right|.$$

 So

$$D^{\delta}\varphi^{2(m+1)} = \sum_{\alpha+\beta=\delta} \frac{\delta!}{\alpha!\beta!} D^{\alpha} \left(\varphi^{2m}\right) D^{\beta} \left(\varphi^{2}\right)$$

 \mathbf{SO}

$$\sup \left| D^{\delta} \varphi^{2(m+1)} \right| \leq \sum_{\alpha+\beta=\delta} C \left((1-\theta) R \right)^{-|\alpha|} \varphi^{m} \cdot 2\varphi C \left((1-\theta) R \right)^{-|\beta|} \varphi$$
$$\leq C' \left((1-\theta) R \right)^{-|\delta|} \varphi^{m+1}$$

for some new constant C'. Now (3) will also hold for the $C_c^{\infty}(\Omega)$ function $\varphi' = \varphi^{2m}$. If we substitute then φ^{2m} in place of φ in (3/4), and use (5) twice we get:

$$\begin{split} \operatorname{new} \ LHS &= \int_{B_{R}(x_{0})} \sum_{|\alpha|=m} |D^{\alpha}u| \varphi^{2m} \\ &\leq \ m! \int_{B_{R}(x_{0})} \sum_{|\beta| \leq m} \left(|f_{\beta}| \sum_{\gamma+\delta=\beta} \left(|D^{\gamma}u| \left| D^{\delta}\varphi^{2m} \right| \right) \right) \\ &+ Mm! \int_{B_{R}(x_{0})} \left(\sum_{|\alpha| \leq m} |D^{\alpha}u| \right) \left(\sum_{|\delta| \leq m, |\gamma| \leq m-1} \left(|D^{\gamma}u| \left| D^{\delta}\varphi^{2m} \right| \right) \right) \\ &\leq \ m! \int_{B_{R}(x_{0})} \left(\sum_{|\alpha| \leq m} |D^{\alpha}u| \right) \left(\sum_{|\beta| \leq m} |f_{\beta}| \varphi^{m} \cdot \sup_{|\delta| \leq m} \left\{ C\left((1-\theta) R \right)^{-|\delta|} \right\} \right) \\ &+ Mm! \int_{B_{R}(x_{0})} \left(\sum_{|\alpha| \leq m} |D^{\alpha}u| \right) \left(\sum_{|\gamma| \leq m-1} \left(|D^{\gamma}u| \varphi^{m} \right) \cdot \sup_{|\delta| \leq m} \left\{ C\left((1-\theta) R \right)^{-|\delta|} \right\} \right) \\ &\leq \ C \int_{B_{R}(x_{0})} \left(\sum_{|\alpha| \leq m} |D^{\alpha}u| \varphi^{m} \right) \left(\sum_{|\gamma| \leq m-1} |D^{\gamma}u| + \sum_{|\beta| \leq m} |f_{\beta}| \right) \end{split}$$

for some new constant C which depends on M, μ, θ, R, m, n .

Rewrite the last line as

$$C \int_{B_R(x_0)} \left(\sum_{|\alpha|=m} |D^{\alpha}u| \varphi^m \right) \left(\sum_{|\gamma| \le m-1} |D^{\gamma}u| + \sum_{|\beta| \le m} |f_{\beta}| \right)$$
(7)

$$+C\int_{B_{R}(x_{0})}\left(\sum_{|\alpha|\leq m-1}|D^{\alpha}u|\varphi^{m}\right)\left(\sum_{|\gamma|\leq m-1}|D^{\gamma}u|+\sum_{|\beta|\leq m}|f_{\beta}|\right)$$
(8)

Term (6) is the same as

$$C\int_{B_{R}(x_{0})}\left(\sum_{|\alpha|=m,|\gamma|\leq m-1}|D^{\alpha}u|\varphi^{m}|D^{\gamma}u|\right)+C\int_{B_{R}(x_{0})}\left(\sum_{|\alpha|=m,|\beta|\leq m}|D^{\alpha}u|\varphi^{m}|f_{\beta}|\right)$$

Now use Cauchy's inequality $ab \leq \varepsilon a^2/2 + b^2/(2\varepsilon)$ on these terms, to show that they are less than

$$2CK\varepsilon \int_{B_R(x_0)} \sum_{|\alpha|=m} |D^{\alpha}u|^2 \varphi^{2m} + \frac{CK}{2\varepsilon} \int_{B_R(x_0)} \left(\sum_{|\gamma|\le m-1} |D^{\gamma}u|^2 + \sum_{|\beta|\le m} |f_{\beta}|^2 \right)$$

where K = number of multi-indices $\leq m$. Do the same for term (7) to get that it is \leq :

$$2CK\varepsilon \int_{B_R(x_0)} \sum_{|\alpha| \le m-1} |D^{\alpha}u|^2 \varphi^{2m} + \frac{CK}{2\varepsilon} \int_{B_R(x_0)} \left(\sum_{|\gamma| \le m-1} |D^{\gamma}u|^2 + \sum_{|\beta| \le m} |f_{\beta}|^2 \right)$$

Use this to write

$$\begin{split} \int_{\Omega} \sum_{|\alpha|=m} |D^{\alpha}u|^{2} \varphi^{2m} &\leq 2CK\varepsilon \int_{B_{R}(x_{0})} \sum_{|\alpha|=m} |D^{\alpha}u|^{2} \varphi^{2m} + \frac{CK}{2\varepsilon} \int_{B_{R}(x_{0})} \left(\sum_{|\gamma|\leq m-1} |D^{\gamma}u|^{2} + \sum_{|\beta|\leq m} |f_{\beta}|^{2} \right) \\ &+ 2CK\varepsilon \int_{B_{R}(x_{0})} \left(\sum_{|\alpha|\leq m-1} |D^{\alpha}u|^{2} \varphi^{2m} \right) + \frac{CK}{2\varepsilon} \int_{B_{R}(x_{0})} \left(\sum_{|\gamma|\leq m-1} |D^{\gamma}u|^{2} + \sum_{|\beta|\leq m} |f_{\beta}|^{2} \right). \end{split}$$

We can pull over the 1st and 3rd term on the RHS to the other side, and add in to both sides

$$+ \int_{B_R(x_0)} \left(\sum_{|\alpha| \le m-1} |D^{\alpha} u|^2 \varphi^{2m} \right)$$

to get

$$(1 - 2CK\varepsilon) \int_{\Omega} \sum_{|\alpha| \le m} |D^{\alpha}u|^2 \varphi^{2m} \le \left(\frac{CK}{\varepsilon} + 1\right) \int_{B_R(x_0)} \left(\sum_{|\gamma| \le m-1} |D^{\gamma}u|^2 + \sum_{|\beta| \le m} |f_{\beta}|^2\right)$$

 \implies (with appropriate choice of ε)

$$\int_{\Omega} \sum_{|\alpha| \le m} |D^{\alpha}u|^2 \varphi^{2m} \le C' \int_{B_R(x_0)} \left(\sum_{|\gamma| \le m-1} |D^{\gamma}u|^2 + \sum_{|\beta| \le m} |f_{\beta}|^2 \right)$$

for some new constant C' depending on M, μ, θ, R, m, n . This implies Lemma 1.

For the proof of the Theorem we need some results about difference quotients:

If f is a real valued function defined on a domain $\Omega \subset \mathbb{R}^n$, a difference quotient in the j-th direction is

$$\Delta_{j}^{h} f := \frac{f\left(x + he_{j}\right) - f\left(x\right)}{h}$$

defined on a domain $\Omega_{|h|}$. We need the following 6 facts (for $h \neq 0$):

(a)
$$\Delta_{j}^{h}(f+g) = \Delta_{j}^{h}f + \Delta_{j}^{h}g$$
 on $B_{R-|h|}(x_{0})$ (Obvious)
(b) $\Delta_{j}^{h}(fg) = g\Delta_{j}^{h}f + \tilde{f}\Delta_{j}^{h}g$ for $f, g \in L^{1}(B_{R}(x_{0}))$, and where $\tilde{f}(x) = f(x + he_{j})$:
 $\Delta_{j}^{h}(fg) = \frac{1}{h}(f(x + he_{j})g(x + he_{j}) - f(x)g(x))$
 $= \frac{1}{h}(f(x + he_{j})g(x + he_{j}) - f(x + he_{j})g(x) + f(x + he_{j})g(x) - f(x)g(x))$
 $= g\Delta_{j}^{h}f + \tilde{f}\Delta_{j}^{h}$

(c) $D^{\alpha}\Delta_{j}^{h}f = \Delta_{j}^{h}D^{\alpha}f$ on $B_{R-|h|}(x_{0})$ and for $f \in H^{m}(B_{R}(x_{0}))$ and $|\alpha| \leq m$: This follows from distributivity of the weak derivative.

(d) Integration by parts formula:

$$\int_{B_R(x_0)} f\Delta_j^h g \, dx = -\int_{B_R(x_0)} g\Delta_j^{-h} f \, dx$$

whenver $f, g \in L^1(B_R(x_0))$ and fg vanishes outside of $B_{R-|h|}(x_0)$. By straight forward calculation:

$$\int_{B_R(x_0)} f\Delta_j^h g \, dx = \frac{1}{h} \int_{B_R(x_0)} f(x) \, g(x + he_j) - \frac{1}{h} \int_{B_R(x_0)} f(x) \, g(x)$$

and

$$-\int_{B_R(x_0)} g\Delta_j^{-h} f \, dx = -\left[\left(\frac{1}{-h}\right) \int_{B_R(x_0)} g\left(x\right) f\left(x+he_j\right) - \left(\frac{1}{-h}\right) \int_{B_R(x_0)} g\left(x\right) f\left(x\right)\right]$$
$$= \frac{1}{h} \int_{B_R(x_0)} g\left(y-he_j\right) f\left(y\right) - \frac{1}{h} \int_{B_R(x_0)} g\left(x\right) f\left(x\right)$$

which are the same after change of variables $y = x + he_j$.

(e) Our condition (B_k) implies:

$$\left|\Delta_{j}^{h}D^{\gamma}a_{\alpha\beta}\left(x\right)\right| \leq M \quad \text{a.e.} \quad x \in \Omega_{|h|}, \ |\gamma| \leq k-1.$$

(f) If $v \in H^{l}(B_{R}(x_{0}))$ then

$$\|\Delta_j^n v\|_{l-1,B_{R-|h|}(x_0)} \le \|v\|_{l,B_R(x_0)}$$

Details of (e):

Because $|\gamma| < k$ there exists one more weak derivative and we can write

$$\Delta_j^h \left(D^\gamma a_{\alpha\beta} \right) = \frac{1}{h} \int_0^h D_j D^\gamma \left(x + t e_j \right) \, dt.$$

Suppose (for purposes of getting a contradiction) that

$$\sup |D_j D^{\gamma} a_{\alpha\beta}| < \Delta_j^h \left(D^{\gamma} a_{\alpha\beta} \right).$$

Then

$$\begin{aligned} \Delta_{j}^{h}\left(D^{\gamma}a_{\alpha\beta}\right) &= \frac{1}{h}\int_{0}^{h}D_{j}D^{\gamma}\left(x+te_{j}\right)\,dt\\ &= D_{j}\left(D^{\gamma}a_{\alpha\beta}\right)\\ &< \Delta_{j}^{h}\left(D^{\gamma}a_{\alpha\beta}\right)\end{aligned}$$

which is a contradiction.

Details of (f):

We show that $\|\Delta_j^h v\|_{0,B_{R-|h|}(x_0)} \leq \|D_j v\|_{0,B_R(x_0)}$ where $v \in H^1(B_R(x_0))$. This will show (f) by applying it to each term in the H^{l-1} norm:

$$\begin{split} |\Delta_{j}^{h}v| &= \left|\frac{v\left(x+he_{j}\right)-v\left(x\right)}{h}\right| \leq \frac{1}{h} \int_{0}^{h} |D_{j}v\left(x_{1},\ldots,x_{j}+\tau,\ldots,x_{n}\right)| d\tau \\ &\leq \frac{1}{h} \cdot h^{1/2} \left(\int_{0}^{h} |D_{j}v\left(x_{1},\ldots,x_{j}+\tau,\ldots,x_{n}\right)|^{2} d\tau\right)^{1/2} \\ &\Longrightarrow \\ |\Delta_{j}^{h}v|^{2} \leq \frac{1}{h} \int_{0}^{h} |D_{j}v\left(x_{1},\ldots,x_{j}+\tau,\ldots,x_{n}\right)|^{2} d\tau \\ &\Longrightarrow \\ \int_{B_{R-|h|}(x_{0})} |\Delta_{j}^{h}v|^{2} \leq \frac{1}{h} \int_{B_{R-|h|}(x_{0})} \int_{0}^{h} |D_{j}v|^{2} d\tau dx \\ &\leq \frac{1}{h} \int_{0}^{h} \int_{B_{R-|h|}(x_{0})} |D_{j}v|^{2} dx d\tau \\ &= \frac{1}{h} \int_{0}^{h} |D_{j}v||_{0,B_{R-|h|}(x_{0})} d\tau \\ &= ||D_{j}v||_{0,B_{R-|h|}(x_{0})} \leq ||D_{j}v||_{0,B_{R}(x_{0})} \end{split}$$

Proof of Theorem 1:

Choose h > 0 s.t. $\overline{B_R}(x_0) \subset \Omega_{|h|}$. If $\zeta \in C_c^{\infty}(\Omega)$ then $\Delta_j^{-h}\zeta \in C_c^{\infty}(\Omega_{|h|})$ and we can use it as our test function in (2):

$$\int_{\Omega} \sum_{|\alpha|,|\beta| \le m} (-1)^{|\beta|} a_{\alpha\beta} D^{\alpha} u D^{\beta} \left(\Delta_j^{-h} \zeta \right) = \int_{\Omega} \sum_{|\beta| \le m} (-1)^{|\beta|} f_{\beta} D^{\beta} \left(\Delta_j^{-h} \zeta \right)$$

using fact (c)

$$\int_{\Omega} \sum_{|\alpha|,|\beta| \le m} (-1)^{|\beta|} a_{\alpha\beta} D^{\alpha} u \Delta_j^{-h} \left(D^{\beta} \zeta \right) = \int_{\Omega} \sum_{|\beta| \le m} (-1)^{|\beta|} f_{\beta} \Delta_j^{-h} \left(D^{\beta} \zeta \right)$$

using fact (d)

$$-\int_{\Omega}\sum_{|\alpha|,|\beta|\leq m} \left(-1\right)^{|\beta|} \Delta_{j}^{h}\left(a_{\alpha\beta}D^{\alpha}u\right)D^{\beta}\zeta = -\int_{\Omega}\sum_{|\beta|\leq m} \left(-1\right)^{|\beta|} \Delta_{j}^{h}\left(f_{\beta}\right)D^{\beta}\zeta$$

using fact (b) and (c)

$$-\int_{\Omega}\sum_{|\alpha|,|\beta|\leq m} \left(-1\right)^{|\beta|} \left(\Delta_{j}^{h}\left(a_{\alpha\beta}\right) D^{\alpha}u + \tilde{a}_{\alpha\beta}D^{\alpha}\left(\Delta_{j}^{h}u\right)\right) D^{\beta}\zeta = -\int_{\Omega}\sum_{|\beta|\leq m} \left(-1\right)^{|\beta|} \Delta_{j}^{h}\left(f_{\beta}\right) D^{\beta}\zeta$$

with some variable rebranding:

$$\int_{\Omega} \sum_{|\alpha|,|\beta| \le m} (-1)^{|\beta|} \tilde{a}_{\alpha\beta} D^{\alpha} v_h D^{\beta} \zeta = \int_{\Omega} \sum_{|\beta| \le m} (-1)^{|\beta|} F_{\beta,h} D^{\beta} \zeta \tag{9}$$

where $\tilde{a}_{\alpha\beta}(x) = a_{\alpha\beta}(x + he_j), v_h = \Delta_j^h u$ and

$$F_{\beta,h} = \Delta_j^h(f_\beta) - \sum_{|\alpha| \le m} \left(\Delta_j^h a_{\alpha\beta} \right) D^{\alpha} u.$$

Ah! Now we can use our helpful lemma (Lemma 1) on (8) $[\tilde{a}_{\alpha\beta} \text{ still satisfies the ellipticity condition (E)}$ and boundedness (B) because it is just $a_{\alpha\beta}$ at a different point in Ω .] For any $\theta \in (0, 1)$

$$\|v_h\|_{m,B_{\theta R}(x_0)} \le C \left(\|v_h\|_{m-1,B_R(x_0)} + \sum_{|\beta| \le m} \|F_{\beta,h}\|_{0,B_R(x_0)} \right),$$

where C does not depend on h. Because of (e) and (f) [and remembering that we made some extra assumptions on f_{β} in the statement of the theorem: $f_{\beta} \in H^k(\Omega)$] we have that

$$\sup_{B_{R-|h|}(x_0)} \left| \Delta_j^h a_{\alpha\beta} \right| \le M \quad \text{and} \quad \|\Delta_j^h f_\beta\|_{0, B_{R-|h|}(x_0)} \le \|f_\beta\|_{1, B_R(x_0)} \tag{10}$$

which we use to rewrite an upper estimate of $||F_{\beta,h}||_{0,B_R(x_0)}$ by applying Cauchy's inequality:

$$||F_{\beta,h}||_{0,B_R(x_0)} \le ||f_\beta||_{1,B_R(x_0)} + KM^2 ||u||_{m,B_R(x_0)}$$

This implies for some new constant C independent of h

$$\|v_h\|_{m,B_{\theta R}(x_0)} \le C\left(\|u\|_{m,B_R(x_0)} + \sum_{|\beta| \le m} \|f_\beta\|_{1,B_R(x_0)}\right).$$

So we get that

$$\limsup_{h \downarrow 0} \|v_h\|_{m, B_{\theta R}(x_0)}$$

exists and is less than some constant which depends on θ , and some other stuff. We now apply:

Lemma 7 (Ch. 5): If $u \in L^2_{loc}(\Omega)$, and if

$$\limsup_{h \downarrow 0} \|\Delta_j^h u\|_{L^2(K)} \le c_K \ (<\infty)$$

for each compact $K \subset \Omega$. Then u has a weak derivative $D_j u \in L^2_{loc}(\Omega)$, and $\Delta^h_j u \rightharpoonup D_j u$ in the weak sense

$$\langle \Delta_j^h u, \varphi \rangle_{L^2} \to \langle D_j u, \varphi \rangle_{L^2} \quad \forall \varphi \in C_c^\infty(\Omega).$$

Further, if $c_K = c$, c independent of K, then $D_j u \in L^2(\Omega)$. **Proof:**

Take a nested sequence of compact sets $K_i \subset \Omega$ s.t. $K_i \subset K_k$ whenever $i \leq k$, that exhaust $\Omega: \bigcup_{i>0} K_i = \Omega$. Observe that $L^2(K_i)$ are Banach spaces so that any sequence of L^2 -norm bounded functions will have a subsequence that is convergent in $L^2(K_i)$. Since the K_i are nested we can actually get a sequence $\Delta_j^{h_k} u$ which converges in every $L^2(K_i)$. Define $D_j u$ to be the function that the sequence $\Delta_j^{h_k} u$ converges to. Now we have to show that $\Delta_j^h u$ converges in the weak sense to $D_j u$. Define a function $N: \mathbb{R} \to \mathbb{Z}_+$ by

$$N(h) = \sup \left\{ h_k \, | \, k \in \mathbb{Z}_+, \, h_k \le h \right\}$$

and write

$$\begin{split} \left\langle \Delta_{j}^{h}u - D_{j}u,\varphi\right\rangle_{L^{2}} &= \left\langle \Delta_{j}^{h}u - \Delta_{j}^{N(h)}u + \Delta_{j}^{N(h)}u - D_{j}u,\varphi\right\rangle_{L^{2}} \\ &= \left\langle \Delta_{j}^{h}u - \Delta_{j}^{N(h)}u,\varphi\right\rangle + \left\langle \Delta_{j}^{N(h)}u - D_{j}u,\varphi\right\rangle. \end{split}$$

The second term clearly goes to 0 b/c $\Delta_j^{N(h)} u \to D_j u$ in the L^2 -norm. We want to show that the first term goes to 0 also as $h \downarrow 0$. We write using fact (d):

$$\left\langle \Delta_j^h u - \Delta_j^{N(h)} u, \varphi \right\rangle \leq - \left\langle u, \left(\Delta_j^{-h} - \Delta_j^{-N(h)} \right) \varphi \right\rangle,$$

and the right hand side clearly goes to 0 as $h \downarrow 0$, because φ is differentiable. Finally, if $c_K = c$ independent of K, then the sequence

$$A_i := \lim_{k \to \infty} \int_{K_i} \left| \Delta_j^{h_k} u \right|^2$$

will be bounded by c, and since K_i exhaust Ω , $\|D_j u\|_{L^2(\Omega)} \leq c$.

to show that v_h is weakly convergent to some $v = D_j u$. Similarly by (9) and our Lemma 7, $\Delta_j^h a_{\alpha\beta}$ and $\Delta_j^h f_\beta$ weakly converge to $D_j a_{\alpha\beta}$ and $D_j f_\beta$ resp. in $L^2(B_{\theta R}(x_0))$.

So $u \in H_{\text{loc}}^{m+1}(B_R(x_0))$ and we can pass to the limit in (8) to get that $D_j u$ satisfies

$$\int_{\Omega} \sum_{|\alpha|,|\beta| \le m} (-1)^{|\beta|} \tilde{a}_{\alpha\beta} D^{\alpha} (D_j u) D^{\beta} \zeta = \int_{\Omega} \sum_{|\beta| \le m} (-1)^{|\beta|} F_{\beta} D^{\beta} \zeta$$
(11)

where

$$F_{\beta} = D_j f_{\beta} - \sum_{|\alpha| \le m} \left(D_j a_{\alpha\beta} \right) D^{\alpha} u.$$

Thus summing over $j = 1, \ldots, n$:

$$||u||_{m+1,B_{\theta R}(x_0)} \le C\left(||u||_{m,B_R(x_0)} + \sum_{|\beta| \le m} ||f_\beta||_{1,B_R(x_0)}\right)$$

with some new constant C depending on m, n, M, μ, θ, R .

We can repeat this procedure starting from (10) provided condition B_2 holds (F_β contains terms with first derivatives of $a_{\alpha\beta}$). In fact we can repeat it at most k times as long as B_k holds, each time with possibly a different value of θ . Since these θ 's are completely arbitrary we can produce

$$||u||_{m+k,B_{\theta R}(x_0)} \le C \left(||u||_{m,B_R(x_0)} + \sum_{|\beta| \le m} ||f_\beta||_{k,B_R(x_0)} \right).$$

Now replace R with θR in the above inequality:

$$||u||_{m+k,B_{\theta^2 R}(x_0)} \le C\left(||u||_{m,B_{\theta R}(x_0)} + \sum_{|\beta| \le m} ||f_\beta||_{k,B_{\theta R}(x_0)}\right)$$

and apply Lemma 1 to the term $||u||_{m,B_{\theta R}(x_0)}$ to get

$$\|u\|_{m+k,B_{\theta^2 R}(x_0)} \le C \left(C' \left(\|u\|_{m-1,B_R(x_0)} + \sum_{|\beta| \le m} \|f_\beta\|_{0,B_R(x_0)} \right) + \sum_{|\beta| \le m} \|f_\beta\|_{k,B_{\theta R}(x_0)} \right)$$

and after adjusting the constant C and remembering that θ was arbitrary, we get:

$$||u||_{m+1,B_{\theta R}(x_0)} \le C\left(||u||_{m-1,B_R(x_0)} + \sum_{|\beta| \le m} ||f_\beta||_{k,B_R(x_0)}\right)$$

which is what we wanted to show.