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Problem 1

a) Show octonion multiplication is not associative.

Together with distributivity, octonion multiplication is defined by the following multiplication table:

i j k l il jl kl

i −1 k −j il −l −kl jl
j −k −1 i jl kl −l −il
k j −i −1 kl −jl il −l
l −il −jl −kl −1 i j k
il l −kl jl −i −1 −k j
jl kl l −il −j k −1 −1
kl −jl il l −k −j i −1

Clearly then octonion multiplication is not associative since

i ((il)j) = i(−kl) = −jl

which is not equal to
(i(il)) j = (−l)j = jl

b) Show that, nevertheless, the following weaker form of associativity holds:

[a, b, c] := (ab)c− a(bc)

vanishes when two of a,b,c are equal. Equivalently, the associator is alternating.

First, we have:

[a+ b, a+ b, c] = ((a+ b)(a+ b))c− (a+ b)((a+ b)c)

= (a2 + ab+ ba+ b2)c− (a+ b)(ac+ bc)

= (a2)c+ (ab)c+ (ba)c+ (b2)c− a(ac)− a(bc)− b(ac)− b(bc)
= [a, a, c] + [a, b, c] + [b, a, c] + [b, b, c]
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Thus by R-linearity and distributivity, we only need to prove [a, a, c] = [b, b, c] = 0 and [a, b, c] + [b, a, c] = 0
for a, b, c the simple elements i, j, k, l, il, jl, kl. The first, that [a, a, c] = 0, is actually assumed in order to
define the multiplication table above. The second claim is easy to check directly. This handles the case
[a, a, b] = 0. The other two cases are similar.

c) Show that octonionic multiplication induces an almost complex structure on the unit imaginary quater-
nions (hint: use (b)).

In class, the almost complex structure defined on the imaginary unit octonions is given by octonion multi-
plication J |p(v) = pv for a point p ∈ S6 = ImO and a tangent vector v. The last thing to check from class
is that J2 = −1. By part b), J2(v) = p(pv) = (pp)v = −v since p is a unit imaginary quaternion.

Problem 2

Hirzebruch signature theorem implies that for a 4-manifold the signature is given by the first Pontryagin
class: σ(M) = p1(M).[M ]/3 (this can also be proved using index theory).
This can be used to show S4 is not almost complex (reference: D. Aroux, notes to MIT course 966, 2007,
lecture 12).
Fill in the details carefully.

The first Pontryagin class of a real vector bundle with a complex structure is defined in terms of the second
Chern class of its complexification: p1(E) = −c2(E ⊗ C). Then we compute:

p1(E) = −c2(E ⊗ C)

= −c2(E ⊕ Ē)

= −c1(E)c1(Ē)− c2(E)− c2(Ē)

= c1(E)2 − 2c2(E)

Now assume S4 has an almost complex structure J . Then from the above, p1(TS4) = c1(TS42)− 2c2(TS4).
After pairing with the fundamental class [S4], we get

c1(TS4).[S4] = 2c2(TS4).[S4] + 3σ(S4)

= 2χ(S4) + 3σ(S4)

= 4.

But H2(S4,Z) = 0, so c1(TS4)2.[S4] = 0, a contradiction. We conclude S4 has no almost complex structure.

Problem 3

Check he claim made in class that the cross product coincides with the standard complex structure on Ĉ
(the sphere S2 with the charts (C, z) and (C, w) with transition w = 1/z on C∗.
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Write z = x+ iy, and recall that the standard complex structure on Ĉ is given by

J(
∂

∂x
) =

∂

∂y
,

J(
∂

∂y
) = − ∂

∂x
.

In class, we defined an almost complex structure on S2 embedded in R3 as follows: for a point −→x and a
tangent vector −→v , J(−→v ) = −→v ×−→x (Note that I may have changed the order of the cross-product from class,
in order to account for a sign error).

In order to compare the the two, we map (C, z) onto S2 minus the north pole via stereographic projection:

z = x+ iy 7→
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

Then the differential maps the tangent vectors ∂
∂x and ∂

∂y into R3 as

∂

∂x
7→

(
−2x2 + 2y2 + 2

(x2 + y2 + 1)2
,

−4xy

(x2 + y2 + 1)2
,

4x

(x2 + y2 + 1)2

)
∂

∂y
7→

(
−4xy

(x2 + y2 + 1)2
,

2x2 − 2y2 + 2

(x2 + y2 + 1)2
,

4y

(x2 + y2 + 1)2

)

Identifying the point z and the tangent vectors ∂
∂x , ∂

∂y with their images in R3 via the above maps, we
compute

∂

∂x
× z =

(
−2x2 + 2y2 + 2

(x2 + y2 + 1)2
,

−4xy

(x2 + y2 + 1)2
,

4x

(x2 + y2 + 1)2

)
×

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
=

1

(x2 + y2 + 1)3
(
−4xy(x2 + y2 − 1)− 8xy, 8x2 − (x2 + y2 − 1)(−2x2 + 2y2 + 2), 2(−2x2 + 2y2 + 2) + 8x2y

)
=

1

(x2 + y2 + 1)3
(
−4xy(x2 + y2 + 1), (2x2 − 2y2 + 2)(x2 + y2 + 1), 4y(x2 + y2 + 1)

)
=

∂

∂y

and similarly ∂
∂y × z = − ∂

∂x verifying the claim.

Problem 4

Show that an almost complex manifold is even dimensional.

Let (M,J) be an almost complex manifold. To compute the dimension of M , we compute the dimension of
it’s tangent space at a point p ∈M . By definition J |P (which we will also call J) is an endomorphism of the
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real vector space TpM satisfying J2 = −1. Then J has minimal polynomial x2 + 1. As such, the eigenvalues
of J are ±

√
−1. Since the coefficients of the characteristic polynomial p(x) = det(Ix− J) are real, its roots√

−1 and −
√
−1 occur with equal multiplicity, i.e. TpM , and hence M , is even dimensional.

Problem 5

Let (M,ω) be symplectic. Show there exists an almost complex structure J satisfying ω(JX, JY ) = ω(X,Y )
for all X,Y .

First we show that given a symplectic vector space (V, ω), there is a complex structure J on V that is
compatible with ω. To do this, first fix a positive definite inner product g. Then g and ω give linear
isomorphisms V → V ∗ given by:

V 3 X 7→ g(X, ·) ∈ V ∗

V 3 Y 7→ ω(Y, ·) ∈ V ∗

Given Y ∈ V , there is an X ∈ V such that g(X, ·) = ω(Y, ·). The assignment Y 7→ X is a linear isomorphism
A : V → V , i.e. g(AX, ·) = ω(X, ·). Also, A is skew-symmetric, since

g(A∗X,Y ) = g(X,AY )

= g(AY,X)

= ω(Y,X)

= −ω(X,Y )

= −g(AX,Y )

A would be a candidate for our complex structure J , except we don’t know if it is compatible with ω or

satisfies A2 = −1. However, we have the polar decomposition A =
√
AA∗J , i.e. J =

√
AA∗−1

A (Note that
AA∗ is symmetric and positive definite, so it’s square root is defined). I claim J is our complex structure.

First, A commutes with AA∗, and hence also
√
AA∗−1

. Then

J2 =
√
AA∗−1

A
√
AA∗−1

A

= AA(AA∗)−1

= −AA∗(AA∗)−1

= −1

And finally J is compatible with ω:

ω(JX, JY ) = g(AJX, JY )

= g(JAX, JY )

= g(J ∗ JAX, Y )

= g(AX,Y )

= ω(X,Y ).
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Now let (M,ω) be a symplectic manifold. Fix a Riemannian metric g on M . Then locally, the above
construction gives a smoothly varying almost complex structure J . The only remaining question is if this
J is globally defined. Since the above construction depends only on g and ω, J is canonically, and hence
globally, defined.

Problem 6

Let M be a 2n-dimensional manifold. Show M admits and almost complex structure iff it admits a nonde-
generate 2-form (i.e. a form α such that αn is nowhere zero).

Problem 5 already implies that the existence of a nondegenerate 2-form implies the existence of an almost
complex structure, since we never used the condition that ω is closed.

For the reverse direction, fix a Riemannian metric g and define ω(X,Y ) = g(JX, Y ). Then ω(X,Y ) = 0 for
all Y ∈ TpM implies JX = 0, since g is nondegenerate (in particular, g is positive definite). Then X = 0, so
ω is nondegenerate.
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