Kähler manifolds, Autumn 2014

University of Maryland, Department of Mathematics course 868K

HW 2: (due by September 23.)

1. (Pluriharmonic)
 (a) \(\partial \bar{\partial} f = 0 \) iff \(f = h + a \), where \(h \) is a holomorphic function, and \(a \) is an anti-holomorphic function.
 (b) If \(X \) is compact and \(f \) is holomorphic on \(X \), then \(f \) is constant.
 (c) Prove or disprove: Let \(f \in C^\infty(\mathbb{P}^1 \times \mathbb{P}^1) \). Then \((\sqrt{-1} \partial \bar{\partial} f)^2 = 0 \) iff \(f \) is constant.

2. Prove the following facts used in the proof of the \(\partial \bar{\partial} \)-lemma:
 (a) \(G_\theta = G_{\bar{\theta}} \) commutes with \(\partial, \bar{\partial}, \Delta = \Delta_{\bar{\theta}} \) as well as with \(\partial^* \) and \(\bar{\partial}^* \).
 (b) Review the proof that \([\Lambda, \partial] = \sqrt{-1} \bar{\partial}^* \) (see Griffiths–Harris page 111 and notation therein).
 (c) Show that \(\partial \) and \(\bar{\partial}^* \) anti-commute.

3. Show that \(S^1 \times S^3 \) admits a complex structure. Why does it not admit a Kähler structure?

4. (Holonomy and submanifolds) (a) Let \((X, g) \) be Kahler. Let \(D \) be a submanifold. Then \(Hol(D, g|_D) \) being induced by \(Hol(X, g) \) consists of unitary matrices. Thus \((D, g|_D) \) is Kahler, too. What’s false in this argument?
 (b) Give a holonomy proof of: if \(D \) is complex submanifold then \((D, g|_D) \) is Kahler.
 (c) Give at least one other proof of (b).

5. (Tangent bundle)
 Let \(X \) be Kahler. Is \(TX \) Kahler?

6. (symplectic forms form a cone?)
 Prove or disprove: Let \(\omega_1, \omega_2 \) be two symplectic forms. Then \(a\omega_1 + b\omega_2 \) is symplectic for any \(a, b \in \mathbb{R}^+ \).

7. Some prefer to use the real operators \(d \) and \(d^c := \sqrt{-1} (\bar{\partial} - \partial) \). Show that these are indeed real operators (i.e., \(\overline{Af} = Af \)). Show that \(d \circ d^c = \sqrt{-1} \partial \circ \bar{\partial} \).