Kähler manifolds, Autumn 2014

University of Maryland, Department of Mathematics course 868K
HW 4: (due by October 23.)

1. (Invariance of $h^{p, 0}$)

Let M and N be birationally isomorphic. Prove that $h^{0, p}(N)=h^{0, p}(M)$. (This was only sketched in class; in particular, prove in detail the version of Hartog's theorem that you will be using.)
2.

Prove that indeed all quadric hypersurfaces in \mathbb{P}^{n} are biholomorphic.
3.
(a) Complete the proof, initiated in class, that the quadric surface in \mathbb{P}^{3} is biholomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ (This proof should use Problem 2 and computation in coordinate charts.)
(b) Give full details to the concluding remark in the proof given in class that S is biholomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ (given the facts established in class concerning A-lines and B-lines).
4.

Give full details to the claim on p. 491 of Griffiths-Harris, that if M is complex, and $V \subset M$ is an analytic subvariety of codimension at least 2 , then any holomorphic map $f: M \backslash V \rightarrow \mathbb{P}^{n}$ admits a sort of meromorphic extension to all of M.
5.

Let S be a quadric surface in \mathbb{P}^{3}, and let $p \in S$. Let π_{p} be the unique holomorphic extension of the (rational) projection map from $\pi_{p}: S \backslash\{p\}$ to a \mathbb{P}^{2} sitting in \mathbb{P}^{3}. Show that π_{p} maps the exceptional divisor of the blow-up E to the line passing through the points $\pi_{p}\left(L_{1}\right), \pi_{p}\left(L_{2}\right) \in \mathbb{P}^{2}$, where L_{i} are the unique lines contained in S and passing through p.

