1. (May, top of page 59) Let \(p: E \to B \) be a fibration, and suppose \(E \) and \(B \) are equipped with basepoints and \(p \) sends basepoint to basepoint. Show that \(p \) has the *based* homotopy lifting property for based maps \(Y \to B \), where \(Y \) is a based space with non-degenerate basepoint \(y_0 \) (i.e., such that \(\{y_0\} \hookrightarrow Y \) is a cofibration).

2. The unitary group is the compact group \(U(n) \) of \(n \times n \) complex-valued matrices \(u \) such that \(u^* = u^{-1} \). (Here \(u^* \) is the adjoint with respect to the usual inner product on \(\mathbb{C}^n \), i.e., the conjugate transpose of \(u \).)

 1) Show that \(U(n) \) operates transitively on the unit sphere \(S^{2n-1} \) in \(\mathbb{C}^n \) (by matrix multiplication, when we think of \(\mathbb{C}^n \) as consisting of column vectors), and that the isotropy group of \((0, \ldots, 0, 1)^t \) can be identified with \(U(n-1) \). Here \(U(n-1) \leq U(n) \) via \(u \mapsto \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \). Then show that the map \(p: U(n) \to S^{2n-1} \) defined by \(u \mapsto u \cdot (0, \ldots, 0, 1)^t \) is a fiber bundle (and hence a fibration) with fiber \(U(n-1) \).

 2) Deduce that there is an exact sequence of homotopy groups

 \[\cdots \to \pi_j(U(n-1)) \to \pi_j(U(n)) \to \pi_j(S^{2n-1}) \to \cdots \]

 and thus that \(\pi_j(U(n-1)) \to \pi_j(U(n)) \) is an isomorphism for \(j < 2n - 2 \).

 3) Show that the map \(\pi_j(U(n-1)) \to \pi_j(U(n)) \) is not necessarily an isomorphism for \(j = 2n - 1 \). (Hint: what is \(U(1) \)?

 4) (A little harder than (3)) Show from the same exact sequence that \(\pi_j(U(n)) \) contains a summand of \(\mathbb{Z} \) when \(n \geq (j+1)/2 \) and \(j \) is odd.