1. Suppose p is a large prime, α is a primitive root, and $\beta \equiv \alpha^a \pmod{p}$. The numbers p, α, β are public. Peggy wants to prove to Victor that she knows a without revealing it. They do the following:

 (1) Peggy chooses a random number $r \pmod{p-1}$.
 (2) Peggy computes $h_1 \equiv \alpha^r \pmod{p}$ and $h_2 \equiv x\alpha^{a-r} \pmod{p}$ and sends h_1, h_2 to Victor.
 (3) Victor chooses $i = 1$ or $i = 2$ asks Peggy to send either $r_1 = r$ or $r_2 = a - r \pmod{p-1}$.
 (4) Victor checks that $h_1 h_2 \equiv \beta \pmod{p}$ and that $h_i \equiv \alpha^{r_i} \pmod{p}$.
 (5) They repeat steps (1) through (4) one more time.

(a) Suppose Peggy does not know a but she correctly guesses that Victor will ask for r_1 in the first round and r_2 in the second round. What strategy should Peggy use to be able to answer both of Victor’s questions correctly?
(b) Suppose Peggy does not know a. She knows the value of r_1 such that $\alpha^{r_1} \equiv h_2 \pmod{p}$, but Victor asks for r_2 in the first round. Why will it be difficult for Peggy to compute the value of r_2 quickly?

2. (a) Suppose Alice uses a budget hash function h to sign her checks, so she signs a check m by signing $h(m)$ where $h(m)$ is a string of 20 binary bits. This yields pairs $(m, \text{sig}(h(m)))$, which she stores on her computer. Suppose Eve has a set of 10^4 fraudulent checks and she wants to put Alice’s signature on at least one of them. Eve breaks into Alice’s computer and obtains a list of 10^4 signed checks $(m, \text{sig}(h(m)))$. Describe how Eve can (with very high probability) put Alice’s signature on some fraudulent check? (Note: $2^{20} \approx 10^6$)
(b) Suppose Alice upgrades to a better hash function h_1 such that $h_1(m)$ is a string of around 200 bits. Why is it unlikely that Eve will be able to use a birthday attack to put Alice’s signature on a fraudulent check.

3. Consider the following signature algorithm. Alice wants to sign a message m. She chooses a large prime p and a primitive root α. She chooses a secret integer a and calculates $\beta \equiv \alpha^a \pmod{p}$. She publishes (p, α, β) but keeps the number a secret. To sign the message, she does the following:

 (1) Chooses a random integer k with $\gcd(k, p-1) = 1$.
 (2) Computes $r \equiv \alpha^k \pmod{p}$.
 (3) Computes $s \equiv am + kr \pmod{p-1}$.
 (4) The signed message is (m, r, s).

Bob verifies the signature as follows:

 (1) Computes $u_1 \equiv \alpha^s \pmod{p}$.
 (2) Computes $u_2 \equiv \beta^m r^r \pmod{p}$.
 (3) Declares the signature valid if $u_1 \equiv u_2 \pmod{p}$.

(a) Show that if Alice signs the document correctly then the verification congruence holds.
(b) Suppose Eve finds out the value of k that Alice used. Describe how Eve can figure out the value of a. (Note: she might at first have more than one possibility (but probably not very many possibilities) for a; you should include a description of how she determines which is the correct one.)

(c) If Eve chooses a value of r for her own message m, why will she have a hard time finding a value of s that makes the verification congruence hold?

4. Consider the following Feistel cryptosystem consisting of three rounds. The key K is the same for each round and has 64 bits. The input for the ith round consists of 64 bits, divided into a left half and a right half: $L_{i-1}R_{i-1}$, where L_i and R_i each have 32 bits. The output is L_iR_i, where $L_i = R_{i-1}$ and $R_i = L_{i-1} \oplus f(K, R_{i-1})$. The function f is given by $f(K, R) \equiv R^K \pmod{2^{64}}$, written as a 64-bit string.

If you receive the ciphertext L_3R_3, describe how you would decrypt it to obtain L_0R_0. Show that this decryption works. (You may not simply quote results about this type of decryption.)

5. Consider the following elliptic curve protocol: Alice wants to send a message m to Bob. Alice and Bob publicly determine an elliptic curve E mod a large prime p and an integer n such that $nP = \infty$ for all points P on E. Alice represents m as a point P_0 on E by some publicly known procedure (the procedure is known, but not P_0 or m). They perform the following steps:

1. Alice chooses a secret integer a with gcd(a, n) = 1 and Bob chooses a secret integer b with gcd(b, n) = 1.
2. Alice computes $P_1 = aP_0$ and sends P_1 to Bob.
3. Bob computes $P_2 = bP_1$ and sends P_2 to Alice.
4. Alice computes $a_1 \equiv a^{-1} \pmod{n}$ and computes $P_3 = a_1P_2$. She sends P_3 to Bob.
5. Bob computes $b_1 \equiv b^{-1} \pmod{n}$ and computes $P_4 = b_1P_3$. It can be shown that $P_4 = P_0$, so Bob has received the message m (that is, he can extract m from P_0).

(a) Suppose Eve knows how to compute discrete logs for elliptic curves and she listens to the communications between Alice and Bob. How can she determine the secret integers a and b? (This also allows Eve to determine P_0, and therefore m, but don’t show this.)

(b) Describe a classical version (that is, a non-elliptic curve version related to the classical discrete log problem) of the above protocol in which the message is now an integer m mod a large prime p.