Homework #6

Throughout the following, q is a power of the prime number p, \mathbb{F}_q denotes a field with q elements, and $\overline{\mathbb{F}}_q$ is an algebraic closure of \mathbb{F}_q.

1. (a) Let $1 \leq j \leq p - 1$. Show that p divides the binomial coefficient $\begin{pmatrix} p \\ j \end{pmatrix}$, and therefore $\begin{pmatrix} p \\ j \end{pmatrix} = 0$ in \mathbb{F}_q.

 (b) Show that if $x, y \in \overline{\mathbb{F}}_q$ and $n \geq 1$, then $(x + y)^q = x^q + y^q$.

2. Show that the polynomial $X^{q^n} - X$ has q^n distinct roots in $\overline{\mathbb{F}}_q$.

3. Show that $\{ x \in \overline{\mathbb{F}}_q \mid x^{q^n} = x \}$ is a field with q^n elements.

4. (a) Let $F \subset \mathbb{F}_q$ be a field with q^n elements and let F^\times denote the nonzero elements of F. Show that $x^{q^n-1} = 1$ for all $x \in F^\times$.

 (b) Show that $F \subseteq \{ x \in \overline{\mathbb{F}}_q \mid x^{q^n} = x \}$, hence these sets are equal since they have the same cardinality.

 (c) Show that for each $n \geq 1$, there is exactly one subfield of $\overline{\mathbb{F}}_q$ with q^n elements. We’ll denote it by \mathbb{F}_{q^n}.

5. (a) $\mathbb{F}_{q^n}^\times$ is cyclic. Why?

 (b) Show that there exists $\alpha \in \mathbb{F}_{q^n}$ such that $\mathbb{F}_{q^n} = \mathbb{F}_q(\alpha)$. (This is a special case of the Primitive Element Theorem.)

 (c) Let $n \geq 1$. Show that there is an irreducible polynomial $f(X) \in \mathbb{F}_q[X]$ of degree n.

6. (a) Let σ be a field automorphism of $\overline{\mathbb{F}}_q$. Show that $\sigma(\mathbb{F}_{q^n}) = \mathbb{F}_{q^n}$. (Hint: use problem 3.) (This part says that the extension $\mathbb{F}_{q^n}/\mathbb{F}_q$ is normal.)

 (b) Let $\phi(x) = x^q$ for all $x \in \mathbb{F}_{q^n}$. Show that ϕ is a field automorphism of \mathbb{F}_{q^n}. (Remark: ϕ is called the Frobenius map.)

 (c) Show that ϕ has order n in the group of automorphisms of \mathbb{F}_{q^n}.

 (d) Let $d \mid n$. Show that $x \in \mathbb{F}_{q^d}$ if and only if $\phi^d(x) = x$. (This is a special case of the Galois correspondence between subfields and subgroups, since ϕ^d fixes x if and only if the subgroup generated by ϕ^d fixes x.)