MATH 601, SAMPLE PROBLEMS

1. Let \(L = \mathbb{Q}(i, 2^{1/4}) \). (a) Prove that \(L/\mathbb{Q} \) is Galois with \([L : \mathbb{Q}] = 8\).
 (b) Determine generators and relations for \(\text{Gal}(L/\mathbb{Q}) \).
 (c) Find all fields \(F \) with \(\mathbb{Q}(i) \subseteq F \subseteq L \).

2. (a) Let \(L/K \) be a finite Galois extension of fields with \(\text{Gal}(L/K) \) abelian. Let \(F \) be a field with \(K \subseteq F \subseteq L \). Show that \(F/K \) is a Galois extension.
 (b) Let \(f(X) \in K[X] \) be an irreducible polynomial whose splitting field has abelian Galois group. Let \(\alpha \) be a root of \(f(X) \). Show that \(K(\alpha) \) contains all roots of \(f(X) \).

3. (a) Let \(L \) and \(L' \) be subfields of \(\mathbb{Q} \) such that \(L' \not\subseteq L \). Show that there is an automorphism \(\tau \) of \(\mathbb{Q} \) such that \(\tau|_L = \text{id} \) but \(\tau|_{L'} \neq \text{id} \).
 (b) Suppose \(L/\mathbb{Q} \) is a normal extension. Let \(\sigma \) be an automorphism of \(\mathbb{Q} \) and let \(\tau \) be an automorphism of \(\mathbb{Q} \) such that \(\tau|_L = \text{id} \). Show that \((\sigma^{-1}\tau\sigma)|_L = \text{id} \).
 (c) Suppose that \(L/\mathbb{Q} \) is not normal. Show that there exist automorphisms \(\tau \) and \(\sigma \) of \(\mathbb{Q} \) such that \(\tau|_L = \text{id} \) but \((\sigma^{-1}\tau\sigma)|_L \neq \text{id} \).

4. Let \(f(x) \) be an irreducible polynomial of degree \(n \) over a field \(F \). Let \(g(x) \) be any polynomial in \(F[x] \). Prove that every irreducible factor of the polynomial \(f(g(x)) \) has degree divisible by \(n \).

5. Determine the splitting field \(F \) over \(\mathbb{Q} \) of \(X^4 + X^2 + 1 \).
 (b) Describe \(\text{Gal}(F/\mathbb{Q}) \).

6. Let \(L/\mathbb{Q} \) be a finite Galois extension of odd degree. Show that \(L \subseteq \mathbb{R} \) (more precisely, any embedding of \(L \) into \(\mathbb{C} \) has image in \(\mathbb{R} \)).

7. Find all irreducible polynomials of degrees 1, 2, 4 over \(\mathbb{F}_2 \) and prove that their product is \(X^{16} - X \).