1. (a) Vigenère: plaintext = aaaaaaaaaa . . . The ciphertext will be the key, repeated several times.
(b) Hill: plaintext = baab. This becomes the vectors (1, 0) and (0, 1). Multiplying (1, 0) times the matrix gives the first row of the matrix. Multiplying (0, 1) times the matrix gives the second row of the matrix.
(c) Affine: plaintext = ab. If the encryption function is \(mx + n \), then \(a = 0 \) encrypts to the value of \(n \), so we obtain \(n \). Also, \(b = 1 \) encrypts to \(m + n \), so we can subtract \(n \) and obtain \(m \).

2. (a) Solve \(3d \equiv 1 \pmod{40} \), since \((5-1)(11-1) = 40 \). The solution is \(d = 27 \).
(b) \(c^{27} \equiv (m^3)^{27} \equiv m^{81} \equiv (m^{40})^2 m \equiv 1^2 m \equiv m \pmod{55} \). This uses Euler’s theorem: \(m^{40} \equiv 1 \pmod{55} \).

3. (a) \(\gcd(670705093 - 33335, 670726081) \) is a nontrivial factor.
(b) The sequence starts 1, 0, 1, 0, 1, Assume \(k_{n+2} = c_0 k_n + c_1 k_{n+1} \). Then

\[
\begin{align*}
k_3 &\equiv 1 \cdot c_0 + 0 \cdot c_1, \\
k_4 &\equiv 0 \cdot c_0 + 1 \cdot c_1.
\end{align*}
\]
This yields \(c_0 = 1, c_1 = 0 \), so the recurrence is \(k_{n+2} = k_n \).

4. (a) Alice needs to solve \(s_1^e \equiv m_1 \pmod{n} \). This is the same as decrypting the RSA “ciphertext” \(m_1 \) to obtain the “plaintext” \(s_1 \). This should be hard if RSA is secure.
(b) We automatically have \(m_2 \equiv s_2^e \), so the signature is valid.
(c) Eve needs to find \(m_3 \) with \(H(m_3) \equiv s_3^e \pmod{n} \). Since \(H \) is preimage resistant, this should be hard.

5. After one round: Left = \(M_1 \), Right = \(M_2 = M_1 \oplus K \oplus M_0 \).
After 2 rounds: Left = \(M_2 = M_0 \oplus M_1 \oplus K \), Right = \(M_3 = M_2 \oplus M_1 \oplus K = M_0 \).
After 3 rounds: Left = \(M_3 = M_0 \), Right = \(M_2 \oplus K \oplus M_3 = M_1 \).
(a) After 2 rounds, you know \(M_0 \) and you know \(M_0 \oplus M_1 \oplus K \), so you know \(M_1 \oplus K \).
But you can’t separate \(M_1 \) and \(K \), so you cannot deduce \(K \).
(b) After 3 rounds, you have the original plaintext, so the system is not secure.

6. Peggy chooses \(r_1, r_2 \) as described and sends the values of \(x_1, x_2 \) to Victor, who checks that \(x_1 x_2 \equiv \beta \). Then Victor asks Peggy for either \(r_1 \) or \(r_2 \). Peggy sends that \(r_i \) and Victor checks that \(x_i \equiv \alpha^{r_i} \pmod{p} \). This is repeated at least 10 times (since \(1/2^{10} < 1/1000 \)).
7. (a) The line through B and C has slope $(8 - 3)/(3 - 2) = 5$. The equation of the line is $y = 5x + 6$. The secret is 6.
(b) The slope of the line through B and D is $(7 - 3)/(4 - 2) = 2$. This is not the line from part (a), so D cannot have a valid share.

8. (a) $aB = abQ = baQ = bA$.
(b) Eve knows Q and $A = aQ$, so she finds a by computing discrete logs. She then computes aB and extracts the key.
(c) p is a prime and α is a primitive root mod p. Alice and Bob choose secret a and b. Alice computes $A \equiv \alpha^a \pmod p$ and Bob computes $B \equiv \alpha^b \pmod p$. Alice sends A to Bob and Bob sends B to Alice. Alice computes $B^a \pmod p$ and Bob computes $A^b \pmod p$. They extract the last 100 bits of these (equal) numbers to obtain their key.