Errata for *Introduction to Number Theory with Cryptography*

page 4, line -4: 1850 should be 1855
page 6, line 15: Vallée-Poussin should be Vallée-Poussin
page 14: Euclid’s statement was that a finite set cannot contain all of the primes. Therefore, A, B, C represent the elements of a finite set of primes (Euclid didn’t actually do this as a proof by contradiction, so this is not necessarily the set of all primes). The prime G that is constructed is an element not in the original set.

page 22, last line: remove one “the”
page 44, line 2: change x to 2 (four times)
page 56, line -3: remove one “a guess”
page 63, line 11: $p^2 q^3 \cdots q^s$ should be $q^2 q^3 \cdots q^s$
page 68, Project 1 (c): The number 1 is not a Hilbert prime.
page 78, last line of proof of Theorem 3.4: replace a_n with a_0 (twice)
page 85, line -3: it should read $c = n^2 + m^2$
page 78, line 2: $P(x)$ should be $P(X)$
page 94, line 1: $gcd(m, nn)$ should be $gcd(m, n)$
page 96, Chapter Highlights 3 should have $a = n^2 - m^2$ in place of $a = n^2 - n^2$.

Also, change $m \not\equiv n \pmod 2$ to “one even and one odd”
page 97, Exercise 3: Add the assumption that $gcd(a, b) = 1$.
page 98, problem 21: Change the hint to “If n is odd, $n = (k + 1)^2 - k^2$ for some k. If n is even, write $n = 2m$ with m odd and separately consider the cases $m = 1$ and $m \geq 3$.”
page 108, Proposition 4.2: change “of” to “if”
page 108, first sentence of last paragraph, should be “gives” in place of “give”
page 109, line 2: change “lemma” to “proposition”
page 109, line 3: change “positive” to “non-negative”
page 110, line 2: change “next section” to “Section 4.4”
page 113, lines 4, 9, 11: change x to c (4 times)
page 123, line -13: change “if try” to “if we try”
page 125, line -8: $gcd(13, 101)$ should be $gcd(13, 100)$
page 140, line 12: add subscript i to p in the first product (twice)
page 145, line -8: $3m - 2$ should be $3m - 1$
page 183, line 12: 21666077416496^{233} should not have the exponent 233.
page 240, Answers to “CHECK YOUR UNDERSTANDING” 3: One primitive root is missing from the list: $2^{13} \equiv 3 \pmod{19}$
page 246, line -13: remove one “decides to”
page 268, line 2: replace $\left(\frac{4}{257}\right)$ with $\left(\frac{1}{11}\right)$ and change 257 to 11 on line 3.
page 284, middle: replace “As in the case $p \equiv q \pmod 4$” with “As in the case $p \equiv q \pmod{4a}$”
page 291, line -7: change “in” to “is” and change “tell” to “tells”
page 297, line 6: Change “per seconds” to “per second”
page 300, line 7: remove “with”
This should be $B(r) = \{(x_1, x_2, \ldots, x_n) \in B \mid x_1^2 + x_2^2 + \cdots + x_n^2 < r^2\}$.

- Change $3/\sqrt{d}$ to $3\sqrt{d}$

- The sum should be $\sum \phi(n)$

- $g(n) = \sum_{d|n} \phi(d)$

- $g(n) = \sum_{d|n} \phi(d)$

- Change “proposition” to “lemma”

- Project 15.7.2.1, part (b): Add “(This exercise requires Theorem 9.4(c).)”

- The indices on F_0 and F_1 are incorrect. These should be F_1 and F_2. Even better, the verification should use $n = 0$ and $n = 1$ instead of $n = 1$ and $n = 2$.

- The displayed formula should read

\[-1 \equiv 3^{2^{m-1}} \pmod{p}\]

- The entry for “Euler ϕ-function” should include page 139

We thank Paul Baginski, Manjul Bhatia, Bruce Bromberg, Jon-Patrick Cook, Daniel Drucker, Tom Haines, Michael Hardy, Vince Lucarelli, Nathan Manning, Jared Ronning, Jonathan Rosenberg, Luke Rothman, and Sandy Zabell for pointing out some of the above errors.