1. (14 points)
Let \(f \) be the function \(f(x) = x^2 - 8 \ln x \) with domain \([1, 10] \).

(a) (4 pts) What properties of \(f \) and its domain guarantee that \(f \) will assume maximum and minimum values?

Solution.
\(f \) is continuous and the domain is a finite closed interval.

(b) (10 pts) What are the maximum and minimum values assumed by \(f \) on its domain?

Solution.
\(f'(x) = 2x - \frac{8}{x} \). So, \(f'(x) = 0 \) at \(x = 2 \).

Because \(f \) is differentiable, the max and min values can only be assumed at inputs from \(\{1, 2, 10\} \).

Minimum value is \(f(2) = 4 - 8 \ln(2) \) (by the first derivative test, or by comparing values).

Maximum value is \(f(10) = 100 - 8 \ln(10) \) (this number is larger than \(f(1) = 1 \)).
2. (10 points)
Find the equation of the tangent line to the curve $4e^{2x} - y^2 = 0$ at the point $(0, 2)$.

Solution.
Use implicit differentiation. Differentiating with respect to x:

$$4e^{2x} - y^2 = 0$$
$$8e^{2x} - 2yy' = 0$$
$$2yy' = 8e^{2x}$$
$$y' = \frac{4e^{2x}}{y}.$$

For $(x, y) = (0, 2)$, we have $y' = 4e^0/2 = 2$, and an equation for that tangent line is

$$y - 2 = 2x.$$
3. (15 points)
Let f be the function with domain $[0, 2]$ defined by $f(x) = \sqrt{2x + 1}$.

(a) (7 pts) Compute the left endpoint Riemann sum estimate $\sum_{i=1}^{4} f(x_{i-1}) \Delta x$ of $\int_{x=0}^{2} f(x) \, dx$ when $n = 4$. (Do not simplify the expression you obtain from the definition.)

Solution.
\[\sqrt{2(0) + 1 \cdot (1/2)} + \sqrt{2(1/2) + 1 \cdot (1/2)} + \sqrt{2(1) + 1 \cdot (1/2)} + \sqrt{2(3/2) + 1 \cdot (1/2)}. \]

(b) (5 pts) Draw the graph of f and the rectangles corresponding to this Riemann sum.

Solution.
Not included for technical reasons.

(c) (3 pts) Is this Riemann sum greater or smaller than $\int_{x=0}^{2} f(x) \, dx$?

Solution.
Smaller.
4. (14 points)

Let \(f \) be the function on \([0, 4]\) defined by \(f(x) = (2x + 1)^{1/4} \). Let \(R \) be the “region under the curve”, i.e. the set of points \((x, y)\) such that \(0 \leq x \leq 4\) and \(0 \leq y \leq f(x)\). Let \(S \) be the solid of revolution obtained by rotating \(R \) about the \(x \)-axis.

What is the volume of \(S \)?

Solution.

\[
\text{volume}(S) = \int_{x=0}^{4} \pi [f(x)]^2 \\
= \int_{x=0}^{4} \pi (2x + 1)^{1/2} \\
= \pi \left[\frac{1}{3} (2x + 1)^{3/2} \right]_{x=0}^{4} \\
= \pi \left(\frac{1}{3} (9^{3/2} - (1/3)(1)) \right) \\
= \frac{\pi}{3} (27 - 1) \\
= \frac{26\pi}{3} .
\]
5. (18 points)
 (a) (8 pts) Compute the average value of the function $f(x) = \sec^2(x)$ over the interval $[0, \pi/4]$.
 Solution.
 This average value \bar{f} is
 \[
 \bar{f} = \frac{1}{(\pi/4)} \int_{x=0}^{\pi/4} \sec^2(x) \, dx \\
 = \frac{4}{\pi} \left[\tan(x) \right]_{x=0}^{\pi/4} \\
 = \frac{4}{\pi} \left(\tan(\pi/4) - \tan(0) \right) \\
 = \frac{4}{\pi} (1 - 0) = \frac{4}{\pi}.
 \]

 (b) (10 pts) Evaluate the definite integral
 \[
 \int_{x=\pi/4}^{\pi/2} \sqrt{\sin x} \cos x \, dx
 \]
 Solution.
 We use a substitution $u(x) = u = \sin(x)$. Then $du/dx = \cos x$, and
 \[
 \int_{x=\pi/4}^{\pi/2} \sqrt{\sin x} \cos x \, dx = \int_{u=u(\pi/4)}^{u(\pi/2)} \sqrt{u} \, du \\
 = \int_{u=1/\sqrt{2}}^{1} \sqrt{u} \, du = \left[\frac{2}{3} u^{3/2} \right]_{u=1/\sqrt{2}}^{1} \\
 = \frac{2}{3} - \frac{2}{3} (1/\sqrt{2})^{3/2} \\
 = \frac{2}{3} (1 - 2^{-3/4}).
 \]
6. (14 points)
Let $s(t)$ be the position of a certain object at time t. Suppose its velocity at time t is e^{2t}, and suppose $s(0) = 1$.
What is the position of the object at time $t = 3$?
Solution.

$$s(3) - s(0) = \int_{t=0}^{3} e^{2t} \, dt = \left[\frac{1}{2} e^{2t} \right]_{t=0}^{3}$$
$$= \frac{1}{2} e^{6} - \frac{1}{2} e^{0}$$
$$= (e^{6} - 1)/2 .$$

Therefore

$$s(3) = s(0) + (e^{6} - 1)/2$$
$$= 1 + (e^{6} - 1)/2$$
$$= \frac{e^{6} + 1}{2} .$$
7. (15 points) According to Poiseuille’s laws, the velocity \(v \) of blood in a blood vessel is given by \(v(r) = k(R^2 - r^2) \), where \(R \) is the (constant) radius of the blood vessel, \(r \) is the distance of the flowing blood from the center of the blood vessel, and \(k \) is a positive constant.

Given \(R \), let \(Q(R) \) be the total blood flow (in milliliter per minute) in the vessel. For \(n \) a positive integer, \(Q(R) \) is approximated by a sum

\[
\sum_{i=1}^{n} v(r_i)2\pi r_i \Delta r
\]

in which \(\Delta R = R/n \) and \(r_i = i\Delta r \). As \(n \) goes to \(\infty \), the sum converges to \(Q(R) \).

(a) (5 pts) Write a definite integral which equals \(Q(R) \).

Solution.

\[
\int_{r=0}^{R} v(r)2\pi r \, dr,
\]

which equals \(\int_{r=0}^{R} k(R^2 - r^2)2\pi r \, dr \).

(b) (10 pts) Compute the definite integral.

Solution.

\[
\int_{r=0}^{R} k(R^2 - r^2)2\pi r \, dr = 2\pi k \int_{r=0}^{R} (R^2 - r^2)r \, dr
\]

\[
= 2\pi k \int_{r=0}^{R} R^2r - r^3 \, dr
\]

\[
= 2\pi k \left[(1/2)R^2r^2 - (1/4)r^4 \right]_{r=0}^{R}
\]

\[
= 2\pi k \left((1/2)R^4 - (1/4)R^4 \right)
\]

\[
= 2\pi k (1/4) R^4 = \pi k (1/2) R^4
\]

\[
= \frac{\pi k R^4}{2}.
\]