Solution: Practice Problem for Numerical Integration

1. Consider the integral \(I = \int_0^2 x^3 \, dx \).

 (a) Find the value of the (i) midpoint rule, (ii) trapezoid rule, (iii) Simpson rule (on the whole interval).
 Find an upper bound for the error \(|Q - I| \leq \cdots\) using the error formulas in each case.
 Here \(a = 0, b = 2 \) and \(f(x) = x^3 \), so we obtain
 \[
 Q_{\text{Midpt}} = 2 \cdot f(1) = 2, \quad Q_{\text{Trap}} = 2 \cdot \frac{f(0) + f(2)}{2} = 8, \quad Q_{\text{Simpson}} = 2 \cdot \frac{f(0) + 4 \cdot f(1) + f(2)}{6} = 4
 \]
 For the error estimates we have \(f''(x) = 6x \) and \(\max_{[0,2]} |f''(x)| = 12 \) yielding
 \[
 |Q_{\text{Midpt}} - I| \leq \frac{(b-a)^3}{24} \max_{[0,2]} |f''(x)| = \frac{2^3}{24} \cdot 12 = 4
 \]
 \[
 |Q_{\text{Trap}} - I| \leq \frac{(b-a)^3}{12} \max_{[0,2]} |f''(x)| = \frac{2^3}{12} \cdot 12 = 8
 \]
 \[
 |Q_{\text{Simpson}} - I| \leq \frac{(b-a)^5}{90 \cdot 32} \max_{[0,2]} |f^{(4)}(x)| = 0
 \]
 since we have \(f^{(4)}(x) = 0 \) in this case. Recall that the Simpson rule is actually exact if \(f(x) \) is a polynomial of degree \(\leq 3 \).

(b) Find the value of the composite trapezoid rule \(Q_{\text{Trap}}^2 \) with 2 subintervals of equal size.
 Here \(N = 2 \) and \(h = (b-a)/N = 1 \) yielding
 \[
 Q_{\text{Trap}}^2 = h \cdot \left[f(0) + f(1) \right] + \left[f(1) + f(2) \right] = 1 \cdot \frac{0 + 2 \cdot 1 + 8}{2} = 5
 \]

(c) Find a value \(N \) such that we can guarantee \(|Q_{\text{Trap}}^N - I| \leq 10^{-10} \) for the composite trapezoid rule with \(N \) intervals of equal size.
 Using \(\max_{[0,2]} |f''(x)| = 12 \) we obtain
 \[
 |Q_{\text{Trap}}^N - I| \leq \frac{1}{12} \frac{(b-a)^3}{N^2} \max_{x \in [a,b]} |f''(x)| = \frac{1}{12} \frac{2^3}{N^2} \cdot 12 = \frac{8}{N^2}
 \]
 We need to choose \(N \) such that
 \[
 \frac{8}{N^2} \leq 10^{-10} \iff \sqrt{\frac{8}{10^{-10}}} \leq N;
 \]
 i.e., \(N \geq 10^5 \cdot \sqrt{8} \approx 282842.7 \). Therefore we need \(N \geq 282843 \) to guarantee \(|Q_{\text{Trap}}^N - I| \leq 10^{-10} \).