2. \(\left(\frac{3}{p} \right) = (-1)^{\frac{p-1}{2}} \left(\frac{3}{p} \right) \). Both factors are 1 if \(p \equiv 1 \) (mod 12) and both are -1 if \(p \equiv -1 \) (mod 12). If \(p \equiv \pm5 \) (mod 12), the two factors have opposite signs so that the product is -1.

4. \(\left(\frac{p}{3} \right) = \left(\frac{p}{5} \right) = 1 \) if and only if \(p \equiv 1, 4 \) (mod 5).

6. Let \(Q = 5(n!)^2 - 1 \). Then 5 and \(n! \) are both relatively prime to \(Q \). Let \(x \) be a modular inverse for \(n! \) (mod \(Q \)). Then \(x^2 \equiv 5 \) (mod \(Q \)). It follows that 5 is a quadratic residue (mod \(Q \)) and hence (mod \(p \)) for every prime divisor \(p \) of \(Q \). Hence by problem 4, every prime divisor of \(Q \) is congruent to 1 or to 4 (mod 5). But \(Q \equiv 4 \) (mod 5). Hence all the prime divisors of \(Q \) cannot be congruent to 1 (mod 5), and at least one of them must be congruent to 4 (mod 5) as desired. Moreover, all prime divisors of \(Q \) are relatively prime to \(n! \), and hence larger than \(n \). It follows that there are arbitrarily large primes congruent to 4 (mod 5), and hence there are infinitely many of them.