1) Prove by contradiction that \(\sqrt{3} \) is irrational.

2) Prove that the product of a nonzero rational and an irrational is irrational.

3) a) Disprove: If \(a, b \in \mathbb{R} \), then \(\log(a + b) = \log a + \log b \).
 b) Prove there exists a real solution to \(x^3 + x - 1 = 0 \) between \(x = 0 \) and \(x = 1 \).
 c) Disprove: There exists a real number \(x \) such that \(x^4 + 3x^2 + 1 = 0 \).

4) Prove that if \(x, y \in \mathbb{R} \), then \(\sqrt{x + y} \neq \sqrt{x} + \sqrt{y} \).

5) Let \(n \) be a positive integer of the form \(n = 2r \) where \(r \) is odd. Prove that there do not exist integers \(x \) and \(y \) such that \(x^2 - y^2 = m \).

6) Prove by induction that \(1 + 3 + 5 + \cdots + (2n - 1) = n^2 \) for all \(n \in \mathbb{N} \).

7) Let \(s \neq 1 \) be a real number. Use induction to prove that \(b + bs + bs^2 + bs^3 + \cdots + bs^{n-1} = \frac{b(1-s^n)}{1-s} \) for all \(n \in \mathbb{N} \).

8) Prove for all integers \(n \geq 0 \) that \(4|(5^n - 1) \).

9) Prove for all integers \(n \geq 4 \) that \(3^n > n^3 \).