Chapter 1 Markov Chains

(8.1) Lemma. If there is a stationary distribution, then all states \(y \) that have \(\pi(y) > 0 \) are recurrent.

Proof. (3.11) tells us that \(E_xN(y) = \sum_{n=1}^{\infty} p^n(x, y) \), so

\[
\sum_x \pi(x) E_xN(y) = \sum_x \pi(x) \sum_{n=1}^{\infty} p^n(x, y)
\]

Interchanging the order of summation and using \(\pi p^n = \pi \), the above

\[
= \sum_{n=1}^{\infty} \sum_x \pi(x) p^n(x, y) = \sum_{n=1}^{\infty} \pi(y) = \infty
\]

since \(\pi(y) > 0 \). Using (3.8) now gives \(E_xN(y) = \rho_{xy}/(1 - \rho_{yy}) \), so

\[
\infty = \sum_x \pi(x) \frac{\rho_{xy}}{1 - \rho_{yy}} \leq 1 - \rho_{yy}
\]

the second inequality following from the facts that \(\rho_{xy} \leq 1 \) and \(\pi \) is a probability measure. This shows that \(\rho_{yy} = 1 \), i.e., \(y \) is recurrent.

With (8.1) in hand we are ready to tackle the proof of:

(4.5) Convergence theorem. Suppose \(p \) is irreducible, aperiodic, and has stationary distribution \(\pi \). Then as \(n \to \infty \), \(p^n(x, y) \to \pi(y) \).

Proof. Let \(S^2 = S \times S \). Define a transition probability \(\bar{p} \) on \(S \times S \) by

\[
\bar{p}((x_1, y_1), (x_2, y_2)) = p(x_1, x_2) p(y_1, y_2)
\]

In words, each coordinate moves independently. Our first step is to check that \(\bar{p} \) is irreducible. This may seem like a silly thing to do first, but this is the only step that requires aperiodicity. Since \(p \) is irreducible, there are \(K, L \), so that \(p^K(x_1, x_2) > 0 \) and \(p^L(y_1, y_2) > 0 \). Since \(x_2 \) and \(y_2 \) have period 1, it follows from (4.2) that if \(M \) is large, then \(p^{K+L+M}(x_2, x_2) > 0 \) and \(p^{K+L+M}(y_2, y_2) > 0 \), so

\[
p^{K+L+M}((x_1, y_1), (x_2, y_2)) > 0
\]

Our second step is to observe that since the two coordinates are independent \(\bar{p}(a, b) = \pi(a) \pi(b) \) defines a stationary distribution for \(\bar{p} \), and (8.1) implies that all states are recurrent for \(\bar{p} \). Let \((X_n, Y_n) \) denote the chain on \(S \times S \), and let \(T \) be the first time that the two coordinates are equal, i.e.,

\[
T = \min\{n \geq 1 : (X_n, Y_n) \text{ is a recurrent state}\}
\]

the time of the first recurrence of \(p \) with probability 1.

The third and final step is to place coordinates \(X_n \) and \(Y_n \) in this order, and place of

\[
P(X_n = x, Y_n = y) = p^n(x, y)
\]

To finish up

\[
\sum_{n=1}^{\infty} p^n(x, y) = \infty \Rightarrow \sum_{n=1}^{\infty} p^n(y, y) = \infty,
\]

and similarly

\[
|P(X_n = x, Y_n = y)| = 1
\]

If we let \(X_n \) follow the stationary distribution

proving the theorem.

Next we should consider the case of a stationary distribution.
\section{Proofs of the Convergence Theorems}

\[T = \min\{n \geq 0 : X_n = Y_n\}. \] Let \(V_{(x,y)} = \min\{n \geq 0 : X_n = Y_n = x\} \) be the time of the first visit to \((x,x)\). Since \(\bar{p} \) is irreducible and recurrent, \(V_{(x,x)} < \infty \) with probability one. Since \(T \leq V_{(x,x)} \) for our favorite \(x \) we must have \(T < \infty \).

The third and somewhat magical step is to prove that on \(\{T \leq n\} \), the two coordinates \(X_n \) and \(Y_n \) have the same distribution. By considering the time and place of the first intersection and then using the Markov property we have

\[
P(X_n = y, T \leq n) = \sum_{m=1}^{n} \sum_{x} P(T = m, X_m = x, X_n = y) \]
\[
= \sum_{m=1}^{n} \sum_{x} P(T = m, X_m = x) P(X_n = y | X_m = x) \]
\[
= \sum_{m=1}^{n} \sum_{x} P(T = m, Y_m = x) P(Y_n = y | Y_m = x) \]
\[
= P(Y_n = y, T \leq n) \]

To finish up we observe that using the last equality we have

\[
P(X_n = y) = P(X_n = y, T \leq n) + P(X_n = y, T > n) \]
\[
= P(Y_n = y, T \leq n) + P(X_n = y, T > n) \]
\[
\leq P(Y_n = y) + P(X_n = y, T > n) \]

and similarly \(P(Y_n = y) \leq P(X_n = y) + P(Y_n = y, T > n) \). So

\[
|P(X_n = y) - P(Y_n = y)| \leq P(X_n = y, T > n) + P(Y_n = y, T > n) \]

and summing over \(y \) gives

\[
\sum_{y} |P(X_n = y) - P(Y_n = y)| \leq 2P(T > n) \]

If we let \(X_0 = x \) and let \(Y_0 \) have the stationary distribution \(\pi \), then \(Y_n \) has distribution \(\pi \), and it follows that

\[
\sum_{y} |p^n(x, y) - \pi(y)| \leq 2P(T > n) \to 0 \]

proving the desired result. \qed

Next on our list is the equivalence of positive recurrence and the existence of a stationary distribution, (7.2), the first piece of which is:
(8.2) Theorem. Let \(x \) be a positive recurrent state, let \(T_x = \inf\{n \geq 1 : X_n = x\} \), and let

\[
\mu(y) = \sum_{n=0}^{\infty} P_x(X_n = y, T_x > n)
\]

Then \(\pi(y) = \mu(y)/E_x T_x \) defines a stationary distribution.

To prepare for the proof of (6.5) note that \(\mu(x) = 1 \) so \(\pi(x) = 1/E_x T_x \). Another useful bit of trivia that explains the norming constant is that the definition and (3.10) imply

\[
\sum_{y \in S} \mu(y) = \sum_{n=0}^{\infty} P_x(T_x > n) = E_x T_x
\]

Why is this true? This is called the “cycle trick.” \(\mu(y) \) is the expected number of visits to \(y \) in \(\{0, \ldots, T_x - 1\} \). Multiplying by \(p \) moves us forward one unit in time so \(\mu p(y) \) is the expected number of visits to \(y \) in \(\{1, \ldots, T_x\} \). Since \(X(T_x) = X_0 = x \) it follows that \(\mu = \mu p \). Since \(\pi \) is just \(\mu \) divided by a constant to make the sum 1, \(\pi \) is a stationary distribution.

Proof. To formalize this intuition, let \(\bar{p}_n(x, y) = P_x(X_n = y, T_x > n) \) and interchange sums to get

\[
\sum_{y} \mu(y) p(y, z) = \sum_{n=0}^{\infty} \sum_{y} \bar{p}_n(x, y) p(y, z)
\]

Case 1. Consider the generic case first: \(z \neq x \).

\[
\sum_{y} \bar{p}_n(x, y) p(y, z) = \sum_{y} P_x(X_n = y, T_x > n, X_{n+1} = z)
\]

\[
= P_x(T_x > n + 1, X_{n+1} = z) = \bar{p}_{n+1}(x, z)
\]

Here the second equality holds since the chain must be somewhere at time \(n \), and the third is just the definition of \(\bar{p}_{n+1} \). Summing from \(n = 0 \) to \(\infty \), we have

\[
\sum_{n=0}^{\infty} \sum_{y} \bar{p}_n(x, y) p(y, z) = \sum_{n=0}^{\infty} \bar{p}_{n+1}(x, z) = \mu(z)
\]

since \(\bar{p}_0(x, z) = 0 \).

Case 2. Now suppose that \(z = x \). Reasoning as above we have

\[
\sum_{y} \bar{p}_n(x, y) p(y, x) = \sum_{y} P_x(X_n = y, T_x > n, X_{n+1} = x) = P_x(T_x = n + 1)
\]

Summing from \(n = 0 \) to \(\infty \),

\[
\sum_{n=0}^{\infty} \sum_{y} \bar{p}_n(x, y) p(y, x) = \sum_{n=0}^{\infty} P_x(T_x = n + 1) = E_x T_x
\]

since \(P_x(T_x = \infty) = 0 \).

With this result in mind,

(4.7) Theorem. \(\pi \) is a stationary distribution.

Proof. By construction, \(\sum_{y \in S} \pi(y) = 1 \). Let \(y \in S \) and consider \(\pi \).

\[
\sum_{y \in S} P_x(T_x > n, X_n = y) = E_x T_x
\]

Since there is a \(\mu \) such that \(\pi(y) = \mu(y)/E_x T_x \), by lemma (3.3) we have \(\sum_{y \in S} \pi(y) = 1 \) for every \(x \in S \).

To prove this, note that

\[
\sum_{y \in S} \pi(y) = \sum_{y \in S} \sum_{n=0}^{\infty} P_x(X_n = y, T_x > n)
\]

\[
= \sum_{y \in S} \sum_{n=0}^{\infty} P_x(X_n = y, T_x > n, X_{n+1} = y) + \sum_{y \in S} \sum_{n=0}^{\infty} P_x(X_n = y, T_x > n, X_{n+1} \neq y)
\]

\[
= \sum_{y \in S} \sum_{n=0}^{\infty} P_x(X_n = y, T_x > n + 1) = E_x T_x
\]

(8.3) Theorem.
Section 1.8 Proofs of the Convergence Theorems

Summing from \(n = 0\) to \(\infty\) we have
\[
\sum_{n=0}^{\infty} \sum_{y} \bar{p}(x, y)p(y, x) = \sum_{n=0}^{\infty} P_x(T_x = n + 1) = \mu(x)
\]
since \(P_x(T = 0) = 0\).

With (8.2) established we can now easily prove:

(4.7) Theorem. If the state space \(S\) is finite then there is at least one stationary distribution.

Proof. By (3.5) we can restrict our attention to a closed irreducible subset of \(S\), and hence suppose without loss of generality that the chain is irreducible. Let \(y \in S\). In view of (8.2) it is enough to prove that \(y\) is positive recurrent, i.e., \(E_yT_y < \infty\). To do this we note that irreducibility implies that for each \(x\) there is a \(k(x)\) so that \(P_x(T_y \leq k(x)) > 0\). Since \(S\) is finite, \(K = \max\{k(x) : x \in S\} < \infty\), and there is an \(\alpha > 0\) so that \(P_x(T_y \leq K) \geq \alpha\). The pedestrian lemma (3.3) now implies that \(P_x(T_y > nK) \leq (1 - \alpha)^n\), so \(E_yT_y < \infty\) for all \(x \in S\) and in particular \(E_yT_y < \infty\).

To prepare for the second piece of (7.2) we now prove:

(8.3) Theorem. Suppose \(p\) is irreducible. Then for any \(x \in S\), as \(n \to \infty\)
\[
\frac{N_n(x)}{n} \to \frac{1}{E_xT_y}
\]

Proof. Consider the first the case in which \(y\) is transient. (3.10) implies that \(EN_n(y) < \infty\) so \(N_n(y) < \infty\) and hence \(N_n(y)/n \to 0\) as \(n \to \infty\). On the other hand transience implies \(P_x(T_y = \infty) > 0\), so \(E_xT_y = \infty\) and \(1/E_xT_y = 0\).

Turning to the recurrent case, suppose that we start at \(y\). Let \(R(k) = \min\{n \geq 1 : N_n(y) = k\}\) be the time of the \(k\)th return to \(y\). Let \(R(0) = 0\) and for \(k \geq 1\) let \(t_k = R(k) - R(k - 1)\). Since we have assumed \(X_0 = y\), the times between returns, \(t_1, t_2, \ldots\) are independent and identically distributed so the strong law of large numbers for nonnegative random variables implies that
\[
R(k)/k \to E_xT_y < \infty
\]

From the definition of \(R(k)\) it follows that \(R(N_n(y)) \leq n < R(N_n(y) + 1)\). Dividing everything by \(N_n(y)\) and then multiplying and dividing on the end by \(N_n(y) + 1\), we have
\[
\frac{R(N_n(y))}{N_n(y)} < \frac{R(N_n(y) + 1)}{N_n(y) + 1} \cdot \frac{N_n(y) + 1}{N_n(y)}
\]
Letting \(n \to \infty \), we have \(n/N_n(y) \) trapped between two things that converge to \(E_y T_y \), so
\[
\frac{n}{N_n(y)} \to E_y T_y
\]

To generalize now to \(x \neq y \), observe that the strong Markov property implies that conditional on \(\{ T_y < \infty \} \), \(t_2, t_3, \ldots \) are independent and identically distributed and have \(P_y(t_k = n) = P_y(T_y = n) \) so
\[
R(k)/k = t_1/k + (t_2 + \cdots + t_k)/k \to 0 + E_y T_y
\]
and we have the conclusion in general. \(\square \)

From (8.3) we can easily get:

(6.5) Theorem. If \(p \) is an irreducible transition probability and has stationary distribution \(\pi \), then
\[
\pi(y) = 1/E_y T_y
\]

Why is this true? From (8.3) it follows that
\[
\frac{N_n(y)}{n} \to \frac{1}{E_y T_y}
\]
Taking expected value and using the fact that \(N_n(y) \leq n \), it can be shown that this implies
\[
\frac{EN_n(y)}{n} \to \frac{1}{E_y T_y}
\]
By the reasoning that led to (3.11), we have \(E_x N_n(y) = \sum_{m=1}^{n} p^m(x, y) \). The convergence theorem implies \(p^n(x, y) \to \pi(y) \), so we have
\[
\frac{E_x N_n(y)}{n} \to \pi(y)
\]
Comparing the last two results gives the desired conclusion. \(\square \)

We are now ready to put the pieces together.

(7.2) Theorem. For an irreducible chain the following are equivalent:

(i) Some \(x \) is positive recurrent.

(ii) There is a stationary distribution.

(iii) All states are positive recurrent.

Proof (8.2). Assume (iii). Then as \(n \to \infty \),
\[
0 \leq \lim_n p^n(x, y) \leq 1
\]
for all \(x, y \). This implies
\[
\lim_n E_x N_n(y) - n = 0
\]
We are done.

(4.7) Strong Markov property.
Let \(r(x) \) be the number of return times to \(x \).
Then as \(n \to \infty \),
\[
\sigma_n \to \mathbb{N}\text{ and}
\]
are independent, and the number \(r(x) \) of return numbers will be
\[
\sum_{i=1}^{\infty} \mathbf{1}_{\{Y_i = x\}}
\]
where the \(Y_i \) are the vertices of a sum.

The last section saw that
\[
\mathbb{E} \sigma_n \to \mathbb{E} \mathbb{N}
\]
while what we need to show is
\[
\mathbb{E} r(x) \to \mathbb{E} \mathbb{N}
\]
Again the argument is

\[
\lim_n E_x N_n(y) - n = 0
\]