Topics & Sample Problems for Stat 700 In-Class Test, Fall 2008

(I) [Multivariate normal and transformations]

In the theory of simple linear regression, data \(Y = (Y_1, Y_2, \ldots, Y_n) \) satisfy

\[
Y_i = a + bX_i + \epsilon_i, \quad \epsilon_i \overset{iid}{\sim} \mathcal{N}(0, \sigma^2)
\]

where \(X_i \) are treated as known constants and \(\vartheta = (a, b, \sigma^2) \in \mathbb{R}^2 \times \mathbb{R}^+ \). The standard least-squares estimators of \((a, b)\) and method-of-moments estimator \(\hat{\sigma}^2 \) can be shown to have the form under \(\vartheta = \vartheta_0 = (a_0, 0, \sigma^2_0) \):

\[
\hat{b} = \frac{1}{s_X \sqrt{n-1}} \sum_{j=1}^{n} c_j \epsilon_j, \quad c_j = \frac{X_j - \bar{X}}{(\sum_{k=1}^{n} (X_k - X)^2)^{1/2}}, \quad \sum_{j=1}^{n} c_j^2 = 1
\]

\[
\hat{\sigma}^2 = \frac{1}{n-2} \epsilon' \left(I - \frac{1}{n} 11' - cc' \right) \epsilon
\]

where \(I \) is the \(n \times n \) identity matrix, \(1 \) the \(n \)-vector with all entries 1, and

\[
\bar{X} = \frac{1}{n} \sum_{j=1}^{n} X_j, \quad s_X^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \bar{X})^2, \quad \epsilon = \left(\begin{array}{c} \epsilon_1 \\ \vdots \\ \epsilon_n \end{array} \right), \quad c = \left(\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array} \right)
\]

(a) Show that \(M = I - \frac{1}{n} 11' - cc' \) is a projection matrix of rank \(n - 2 \).

(b) Prove that \((n - 2) \hat{\sigma}^2 / \sigma_0^2 \sim \chi^2_{n-2} \).

(c) Prove that \(\hat{b} \) is independent of \(\hat{\sigma}^2 \).

(II) [Identifiability & sufficiency]

Suppose that a data vector \(X = (X_1, \ldots, X_n) \) is observed, with components \(iid \) with \(\vartheta = (\vartheta_1, \vartheta_2) \in \Theta = (0, 1)^2 \) and marginal density

\[
f(x, \vartheta) = \frac{\vartheta_2}{\vartheta_1} I_{[0<x \leq \vartheta_1]} + \frac{1 - \vartheta_2}{1 - \vartheta_1} I_{[\vartheta_1 < x < 1]}
\]

(i) Show that the model is not identifiable on \(\Theta \), but is identifiable on \(\Theta^* = \{ \vartheta \in (0, 1)^2 : \vartheta_2 > \vartheta_1 \} \).

(ii) Show that the minimal sufficient statistic for \(\vartheta \in \Theta^* \) is the set of order statistics \((X_{(1)}, \ldots, X_{(n)}) \).
(III) [Bayes & Decision Theory]

Consider the model with parameter \(\vartheta \in \Theta = (0, 1) \), data sample \(X = (X_1, \ldots, X_n) \) from the density

\[
f(x, \vartheta) = \vartheta I_{[0<x\leq1]} + (1 - \vartheta) I_{[1<x\leq2]}
\]

and prior density \(\pi(\theta) = 3\theta^2 \) on \((0, 1)\).

(i) Find the posterior density of \(\theta \) given \(X \). *Hint: use the sufficient statistic!*

(ii) Under the loss function \(L(\vartheta, a) = (\vartheta - a)^2 / \vartheta \), find the Bayes rule (i.e., the \(\pi \)-Bayes optimal estimator \(d(X) \)).

(IV) [UMVUE’s, exponential families]

Explain why there is a UMVUE for \(\mu \sigma^2 \) based on a \(\mathcal{N}(\mu, \sigma^2) \) data sample \(X = (X_1, \ldots, X_n) \) with \(n \geq 3 \), and show how to determine it as a ratio of multiple integrals, but you need not find the explicit form of the estimator. *Hint: find \(E(X_1(X_2 - X_3)^2) \).*