Homework 1 – due 10/24/03
Math 603

Do at least 3 problems to earn a grade of √. Do more to earn a √+.

4. (a) Suppose A is an integrally closed Noetherian domain with field of fractions K. Suppose L/K is a finite separable extension, and let B denote the integral closure of A in L. Prove that B is a finite A-module. Hint: Use Atiyah-Macdonald, Prop. 5.17.

(b) Let k be a field and suppose B is a domain which is also a finitely generated k-algebra. Let $L = \text{Frac}(B)$ and let $	ilde{B}$ denote the integral closure of B in L. Assume that $\text{char}(k) = 0$ (for simplicity). Prove that $	ilde{B}$ is a finite B-module and a finitely generated k-algebra. Hint: use the Noether Normalization lemma applied to B together with part (a). (Remark: Spec(\tilde{B}) is called the normalization of the scheme Spec(B). This exercise implies, for example, that the normalization of an irreducible variety is still a variety, because it is still finite-type over the coefficient field.)

(c) Suppose A is a domain which is also a finitely generated algebra over a field k of characteristic zero. Let L be a finite extension of $K = \text{Frac}(A)$, and let B be the integral closure of A in L. Prove that B is a finite A-module and a finitely-generated k-algebra. (Remark: This is essentially Theorem 3.9A in Hartshorne’s book Algebraic Geometry, and is stated there – without proof – in the more general situation where k need not have characteristic zero.)

5. Let k be any algebraically closed field, and let B be a domain which is a finitely generated k-algebra. Let x be a closed point of Spec(B), and let $U \subset \text{Spec}(B)$ be a non-empty open set. Show that there is a curve in Spec(B) joining x to some point in U. (Note: for the purposes of this exercise, a curve in Spec(B) is a closed set of form $V(p)$, p a prime ideal, where $\dim(B/p) = 1$). Hint: do it first in the case $B = k[X_1, \ldots, X_n]$, then reduce to this case by using the Noether Normalization and the Going-Down theorem.