1. If $G = \text{Spec}(A)$ is an affine group scheme, and $I \subset A$ is an ideal such that $\text{Spec}(A/I)$ is a subgroup scheme of G, then show that $\text{Spec}(A/\sqrt{I})$ is also a subgroup scheme of G. Deduce that the set of \overline{k}-points of an algebraic subgroup scheme is the set of \overline{k}-points of a sub algebraic group. Hint: show that if I is a Hopf ideal, then so is \sqrt{I}.

2. Assume $k = \overline{k}$ has char(k) $\neq 2$.
(a) The group O_n is not connected.
(b) Let V be the set of skew symmetric $n \times n$ matrices. Show that $x \mapsto (1+x)^{-1}(x-1)$ defines an isomorphism of a non-empty open subset of SO_n onto an open subset of V. Show that SO_n is the identity component of O_n.

3. Let G be a connected algebraic group and let N be a finite normal subgroup. Show that N lies in the center of G. Hint: for $n \in N$ consider the map $x \mapsto xnx^{-1}$ of G to N.
